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A spatial human thymus cell atlas mapped to 
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Filip Van Nieuwerburgh14,15, Omer Ali Bayraktar1, Minal Patel1, E Graham Davies8,9,   
M uz li fa h A. Haniffa1,10,16, Virginie Uhlmann2,  L ui gi  D. Notarangelo5,  R on al d N. Germain6 ✉, 
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T cells develop from circulating precursor cells, which enter the thymus and migrate 
through specialized subcompartments that support their maturation and selection1. 
In humans, this process starts in early fetal development and is highly active until 
thymic involution in adolescence. To map the microanatomical underpinnings of this 
process in pre- and early postnatal stages, we established a quantitative morphological 
framework for the thymus—the Cortico-Medullary Axis—and used it to perform a 
spatially resolved analysis. Here, by applying this framework to a curated multimodal 
single-cell atlas, spatial transcriptomics and high-resolution multiplex imaging data, 
we demonstrate establishment of the lobular cytokine network, canonical thymocyte 
trajectories and thymic epithelial cell distributions by the beginning of the the second 
trimester of fetal development. We pinpoint tissue niches of thymic epithelial cell 
progenitors and distinct subtypes associated with Hassall’s corpuscles and identify 
divergence in the timing of medullary entry between CD4 and CD8 T cell lineages. 
These findings provide a basis for a detailed understanding of T lymphocyte 
development and are complemented with a holistic toolkit for cross-platform imaging 
data analysis, annotation and OrganAxis construction (TissueTag), which can be 
applied to any tissue.

The thymus is a highly specialized organ dedicated to supporting T cell 
generation, which begins to develop in embryonic post-conception 
week (p.c.w.) 8 from the bilateral thymic primordia1. Precursors of 
thymic epithelial cells (TECs), vascular and mesenchymal cells estab-
lish the microenvironment for T cell development, while lymphoid 
precursors colonize the thymic lobes and begin their continuous dif-
ferentiation into conventional and unconventional T cell types that are 
released into the periphery from p.c.w. 12–14 onwards1–3.

The thymus is organized into macroscopic compartments, the 
medulla and cortex, which are associated with distinct stages of T cell 

development. Bone-marrow-derived precursors enter the thymus in 
the medulla or around the corticomedullary junction (CMJ) and migrate 
to the cortex, where the CD4−CD8− double-negative (DN) thymocytes 
commit to the T lineage and undergo a first wave of V(D)J recombi-
nation of their T cell receptors (TCRs). After a proliferative burst in 
the early CD4+CD8+ double-positive (DP) stage, a second wave of TCR 
rearrangement at the TRA locus is followed by positive selection of 
cells with a functional TCR through interactions with cortical TECs 
(cTECs). This prompts differentiation into the major conventional 
lineages of CD4+ and CD8+ single-positive (SP) thymocytes, which 
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migrate into the thymic medulla. There they undergo a pruning pro-
cess termed negative selection, whereby medullary TECs (mTECs) 
and other antigen-presenting cells, such as dendritic cells (DCs) and 
B cells, delete or convert autoreactive thymocytes into suppressive 
regulatory T (Treg) cells to enforce tolerance to self4. Beyond the coarse 
division into cortex and medulla, the thymus has secondary morpho-
logical structures, such as medullary Hassall’s corpuscles (HCs), and 
less clearly defined regions, such as the highly vascularized region at the 
CMJ, often referred to as perivascular space (PVS). Finally, the thymus 
is surrounded by a capsule, which exhibits extensions of connective  
tissue, called trabeculae or septa, that separate individual thymic  
lobules5.

Recent efforts by the Human Cell Atlas Community, the Human 
BioMolecular Atlas Program (HuBMAP) and others have identified 
a high degree of diversity both in developing T cells and in resident 
haematopoietic and stromal lineages in the prenatal and postnatal 
human thymus3,6–12. Yet, questions remain about the fine-grained 
organization of these cell types within the thymic lobules and tissue 
niches that drive the maturation and migration of thymocytes. These 
points have been difficult to address using low-throughput spatial 
technologies, but emerging methods for spatial genomics and highly 
multiplexed RNA/protein imaging13 now provide sufficient resolu-
tion to construct a comprehensive spatial and molecular atlas of the 
human thymus. Despite these advances, intersample comparisons, 
especially for human samples, have been impeded by the variability 
in tissue morphology and sampling approaches, which represents a 

substantial hurdle for data integration and cross-study comparisons. 
Moreover, the lack of a common coordinate framework (CCF)14 limits 
spatial annotations to discrete structures or morphological compart-
ments, precluding the assessment of intraregion variance and intrinsic 
molecular gradients. To overcome these obstacles and obtain a more 
holistic portrait of this critical immunological organ throughout early 
human development, we describe a mathematical model for a continu-
ous scale- and rotation-invariant morphological CCF for the human 
thymus, which we term the Cortico-Medullary Axis (CMA).

We used this CCF to integrate a comprehensive dataset consisting 
of two types of spatial omics data and, to our knowledge, the largest 
multimodal single-cell annotation reference of the human thymus to 
date. This enabled us to describe the organization of the thymus at a 
resolution beyond the typically annotated morphological compart-
ments. We show that most cytokine/chemokine gradients and the 
canonical T lineage maturation trajectory are already established by 
the beginning of the second trimester, whereas TEC progenitor niches 
partially differ between prenatal and postnatal thymus. Furthermore, 
we find specific cell types and genes associated with HCs and show 
that thymocytes developing along the CD4 and CD8 lineages exhibit 
divergent timing of corticomedullary migration.

Building a multimodal spatial thymus atlas
To robustly map and characterize human thymic cell types throughout 
development, we built a comprehensive spatial multimodal thymus 
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Fig. 1 | Human thymus spatial atlas data composition and methodology.  
a, Schematic of the combined use of spatial and dissociated datasets. b, The 
proportional contributions of different studies to main cell types and age 
groups, n = 29 donors. HTSA, human thymus spatial atlas. c, The composition 
of dissociated and spatial datasets containing both newly generated and 
previously published data spanning fetal and early paediatric human life.  
Each dot represents a sample and the stacked dots within a technology panel 

represent samples from the same donor. The dot colour indicates data source. 
Further information is provided in Supplementary Tables 1 and 2 and Extended 
Data Fig. 1a. d, Representative H&E image of a paediatric thymus (7 days old) 
showing the major anatomical compartments. Scale bar, 0.5 mm. e, Overview 
of the functionalities available in the TissueTag software. Details of histology 
annotations and derivation of the OrganAxis framework are provided in 
Supplementary Notes 1 and 2.
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cell atlas by combining single-cell sequencing and spatial data from 
fetal (p.c.w. 11–21) and paediatric (neonate to 3 years) thymus samples 
(Fig. 1a). We first integrated three large publicly available datasets3,7,15 
(20 donors, 266,551 cells) with in-house-generated cellular index-
ing of transcriptomes and epitopes by sequencing (CITE-seq) data 
(5 donors, 146,352 cells) and additional stroma-enriched single-cell 
RNA-sequencing (scRNA-seq) data (4 donors, 69,748 cells) (Fig. 1b,c, 
Extended Data Fig. 1a,b and Supplementary Table 1). This permitted 
annotation of T cell developmental states and increased representa-
tion of epithelial, stromal and resident immune subsets in the thymus 
(Fig. 1b and Extended Data Fig. 1c–e). To provide a spatial context, we 
generated Visium spatial transcriptomics data (10x Genomics) from 
both fetal (9 samples from 5 donors) and paediatric (16 samples from  
6 donors) tissue and integrated previously published fetal Visium data 
(3 samples from 2 donors)16 (Fig. 1c and Supplementary Table 2). Moreo-
ver, we performed 44-plex IBEX cyclic protein imaging17 of paediatric 
tissue samples (Supplementary Table 3). IBEX nucleus signals were 
segmented in three-dimensional (3D) space to extract channel mean 
levels per cell, yielding 1,101,631 nuclei from 8 samples/donors (Meth-
ods). Finally, we generated 14-plex RareCyte protein imaging data for 
validation purposes (Fig. 1c and Supplementary Table 4).

To integrate spatial modalities and biological samples, we devel-
oped the TissueTag computational framework and Python package 
(see Code availability). TissueTag uses high-resolution haematoxylin 
and eosin (H&E)-stained images for (semi)automatic tissue annota-
tion to extract key histological features of tissues, such as the thymic 
cortex and medulla (Fig. 1d,e (left) and Supplementary Note 1). These 
annotations can subsequently be used to construct a CCF (OrganAxis) 
based on distance measurements between two or more histological 
landmarks (Fig. 1e (centre)). This unified OrganAxis enables various 
downstream analyses, such as integration of data from different modali-
ties and cross-condition comparison of gene expression and protein 
abundance along the OrganAxis (Fig. 1e (right)).

Constructing a CCF for the human thymus
To establish a CCF for the human thymus and accurately model the spa-
tial variability within a thymic lobule, we produced resolution-matched 
tissue annotations for IBEX and 10x Visium data using TissueTag. For 
each image, we used a pixel classifier to distinguish between the cor-
tex and medulla and unbiasedly call the border between them. We 
next corrected annotations where applicable and defined tissue edge 
(capsule), HC, PVS and vessel regions manually (Fig. 2a and Extended 
Data Fig. 2a,b; details on TissueTag-based annotation are provided 
in Supplementary Note 1). Finally, we used TissueTag to position any 
spatial coordinate P (such as a Visium spot or the centroid of a seg-
mented IBEX nucleus) through the OrganAxis framework using the 
distances to the cortex, medulla and edge (Fig. 2b, Extended Data 
Fig. 2c and Supplementary Note 2). First, a pair of these distances 
(for example, distance to cortex and distance to medulla) was used 
to compute a nonlinear distance metric H (signed and normalized) 
to the boundary separating the two regions (such as the cortex and 
medulla). H is a sigmoid-shaped function, engineered for increased 
sensitivity to boundary-proximal spatial changes. We next combined 
two H functions between (1) the edge and cortex and (2) the cortex  
and medulla to better capture the relative position across the entire 
thymus lobule. This enabled us to construct a thymus-specific Organ-
Axis, which we termed the CMA (Fig. 2b,c and Extended Data Fig. 2d). 
As the OrganAxis is calculated on the basis of morphological land-
marks alone, the approach is universally applicable to any 2D and 3D 
datasets acquired by distinct spatial technologies, enabling quantita-
tive comparison across samples and modalities.

On integrated UMAP embeddings, discrete annotations broadly 
clustered together but did not capture heterogeneity across space 
(Fig. 2d), while the CMA captured local and global features consistently 

(Fig. 2e). All other technical co-factors were independent (Extended 
Data Fig. 3a–c), highlighting the ability of the CMA to capture biological 
variance in integrated space. To quantify this, we performed a principal 
component analysis (PCA) of the full feature space for each spatial 
modality (genes for Visium, protein targets for IBEX). We then derived a 
score to assess the correlation of the principal component (PC) cumula-
tive explained variance with the CMA or with the total gene or marker 
coverage per Visium spot or IBEX segmentation, respectively. We found 
that the CMA explained substantial and similar degrees of variance 
in both the fetal and paediatric Visium dataset (Fig. 2f), indicating 
consistency in the representation of transcriptomic diversity across 
both developmental stages despite clear morphological differences. 
In IBEX data, the association with the CMA was lower, probably owing 
to lack of information on cell composition variance that is missed by 
single-nucleus segmentations. Another factor is likely to be the com-
position of our antibody panel, which was deliberately chosen on the 
premise of cell identification and not for highly variable features across 
the CMA (Fig. 2f). Deriving the cumulative explained variance on indi-
vidual samples from all datasets demonstrated no clear association 
with age or donor in both developmental time windows (Extended 
Data Fig. 3d).

Overall, the CMA captures spatial variance both at the level of the 
individual thymus section as well as across sections, independent of 
tissue size, donor age or batch (Fig. 2c–e and Extended Data Fig. 3a–d). 
A detailed description of the axis formulation, rationale, data simula-
tion and implementation is provided in Supplementary Note 2 and the 
accompanying online tutorial (see Code availability).

T lineage trajectories across ages
The thymus undergoes substantial architectural changes during 
early human development, underscoring the need for a sophisticated 
approach to locate equivalent regions in fetal and paediatric samples. 
To aid with data integration, we binned the CMA into anatomically 
informed levels (capsular and subcapsular region, cortical and medul-
lary CMJ, and three cortical and medullary levels) using the same CMA 
cut-off values for all of the samples (Fig. 3a,b and Methods). Next, to 
compare cell type spatial localization patterns between fetal and pae-
diatric thymus, we performed cell type deconvolution of Visium data 
using our newly integrated fetal and paediatric single-cell datasets 
and mapped the annotated cell types to the CMA (Fig. 3c,d). This ena-
bled us to spatially position a broad range of stromal and immune cell 
types, including TECs, fibroblasts, vascular cells, B cells and myeloid 
cells (Supplementary Note 3). Moreover, we were able to map various 
differentiation stages of the T cell lineage and establish their locali-
zation in the fetal and paediatric thymus (Fig. 3e and Extended Data 
Fig. 4a; details on T lineage annotation and mapping are provided in 
Supplementary Note 4).

We found a highly conserved distribution of canonical αβ T lineage 
thymocytes along the CMA across development (Fig. 3e), which com-
plements our previous observation that the cellular abundances of 
the main thymocyte differentiation stages are generally constant from 
p.c.w. 12 until 3 years of age3. Visium-derived CMA prediction pinpointed 
the early T cell progenitor (ETP) stage to the medulla in both fetal and 
paediatric tissue (Fig. 3e). This is consistent with previous reports of 
thymic entry of lymphoid progenitors in the medulla or CMJ18,19, and 
also with demonstrations of an extensive vascular network in the thymic 
medulla20. The subsequent DN(early) stage showed substantial migra-
tory activity as reflected by its wide distribution across thymic layers. 
While it was mostly detected in the subcapsular region in both the 
fetal and paediatric thymus, additional enrichment of this stage was 
observed in the paediatric medulla (Fig. 3e). We found that the subse-
quent maturation stages followed the conventional circular migration 
path21, with (sub)capsular localization of DN thymocytes and a more 
distributed cortical pattern in the proliferating DP(P) and quiescent 
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DP(Q) thymocytes. αβT(entry) cells undergoing positive selection were 
still cortically located, whereas mature thymocytes committed to the 
CD4 or CD8 T lineage were enriched in the medulla (Fig. 3e).

To elucidate possible driving forces governing this migration pro-
cess, we examined cytokine and chemokine expression in our Visium 
dataset. To this end, we calculated the relative distribution across the 
binned CMA for key thymic cytokines and chemokines detected in 
the Visium data and performed hierarchical clustering of the fetal 
distribution profiles to determine co-expressed cytokine groups 
(Fig. 3f). This revealed a large cluster of medullary and a smaller 
cluster of more cortical cytokines and chemokines. We further cal-
culated the cosine similarity and performed an analysis of variance 
(ANOVA) to estimate the effect of age group and CMA level on cytokine 

expression. Although most cytokines exhibited significant differences 
in expression levels between the fetal and paediatric thymus accord-
ing to ANOVA, the vast majority did show a non-significant interac-
tion in the expression pattern across CMA bins as well as a very high 
cosine similarity, indicating developmental conservation in cytokine 
expression patterns (Fig. 3f and Supplementary Table 5). Notably, the 
classical cortical (CCL25 and CXCL12) and medullary cytokines (CCL19 
and CCL21) were among the genes with the highest cosine similarity 
(Fig. 3f and Extended Data Fig. 4b). Cytokines or chemokines with a 
low cosine similarity and/or a significant interaction effect between 
age and CMA layer, such as IL34, IL33, IL1R1, CCL2 and SPP1, were mostly 
expressed in the fetal (sub)capsular region but shifted to the medulla 
in the paediatric thymus (Fig. 3f). scRNA-seq data suggested that this 
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Fig. 2 | Multimodal data integration using tissue landmarks and a 
continuous CMA CCF. a, Representative H&E sections (left) of fetal (p.c.w. 15) 
and paediatric (3 months old) Visium data, and virtual H&E for paediatric  
IBEX (7 days old). Corresponding discrete annotations (right) curated with 
TissueTag for cortex, medulla, edge (capsule + septa), tissue artefacts and fetal 
thymus-associated lymphoid aggregates (TALA). b, Illustration of the CMA 
derivation. P, spot in space. Details of OrganAxis construction are provided in 
Supplementary Note 2. c, CMA mapping for sections shown in a and a magnified 
region with the corresponding (virtual) H&E image. Axis parameters: r = 15 μm, 

K = 10. d, Batch-corrected UMAP embeddings of all Visium and IBEX samples in 
the study coloured by tissue annotations presented in a. Each dot corresponds 
to a Visium spot or IBEX cell. The total numbers of spots or cells, detected genes 
or markers and samples per dataset are indicated. e, UMAP embedding from  
d coloured according to CMA values. f, The contributions of CMA, technical 
factor (number of genes per spot or total signal per cell) and other sources  
of variability to the cumulative variance explained by first ten PCs in each 
spatial dataset: fetal Visium (12 samples), paediatric Visium (16 samples) and 
paediatric IBEX (8 samples). For a and c, scale bars, 1 mm.
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was mainly due to differential expression between fetal and paediat-
ric fibroblasts, endothelial cells, TECs and macrophages (Extended  
Data Fig. 4c).

Overall, we show that, by applying the CMA to spatial transcriptom-
ics data and integrating this with a scRNA-seq reference, we are able 
to track the entire spatial trajectory of T lineage differentiation and 
demonstrate that it is already broadly established by the beginning 
of the second trimester of human development. We also show that, 
with few exceptions, the cytokine and chemokine expression patterns 
driving T cell migration are largely conserved between fetal and early 
postnatal thymus.

Spatial mapping of TEC subtypes
The development of T cells is directly dependent on and supported by 
resident stromal and immune cells, which we were able to annotate and 
map using the single-cell atlas and Visium data as described above (Sup-
plementary Note 3). TECs specifically have a key role in the selection 
of T cells with a diverse TCR repertoire (positive selection conveyed by 

cTECs) and tolerance to self-antigens (negative selection conducted 
by mTECs together with DCs, B cells and fibroblasts)22.

To profile human fetal and paediatric TECs, we integrated several 
new and published scRNA-seq datasets enriched for CD205+ cTECs and 
EPCAM+ mTECs or depleted of CD45+ lymphoid cells7,15 (Extended Data 
Fig. 1a). This enabled us to identify three subsets of cTECs, multiple 
mTEC subtypes and putative bipotent TEC progenitor cells23–25 termed 
mcTECs in earlier studies3,26 (Fig. 4a,b). To infer the spatial localization 
of these groups of cells, we used Visium deconvolution (Fig. 4c) and 
further validated the findings using IBEX multiplex imaging with an 
antibody panel tailored towards TEC detection (Extended Data Fig. 5a). 
Segmented nuclei from IBEX data were integrated and annotated using 
the scRNA-seq data as a reference based on shared gene/protein space 
using a k-nearest neighbours (KNN) approach (ISS patcher; Methods 
and Extended Data Fig. 5b,c). We then inferred CMA values for the anno-
tated TECs from the IBEX images (Fig. 4d,e).

Our scRNA-seq data revealed limited heterogeneity in the cTEC com-
partment, with three major subtypes, cTECI, II and III, mainly differing 
in the expression of MHCII genes, DLL4, TP53AIP1 and TBATA (Fig. 4b). 
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For both fetal and paediatric thymus, Visium mapping of cTECs pre-
dicted mostly capsular and subcapsular localization of cTECI, while 
cTECII showed a broader distribution across (sub)capsular regions 
and cortex (Fig. 4c). cTECIII was detected only in paediatric samples 
and was similarly distributed in (sub)capsular areas and across the 
cortex. Analysis of IBEX data confirmed this enrichment pattern for 
the paediatric thymus and cells expressing the cTEC marker KRT8 were 
clearly detected in the cortex (Fig. 4e,f).

In the mTEC compartment, we could distinguish immature mTECI 
(CCL21+MHCIIloAIRE−), mature AIRE-expressing mTECII (AIRE+MHCIIhi) 
and a set of AIRE− mature mTEC populations that resembled mimetic 
cells in mice6. These included mTECIII keratinocytes (IVL+), myoTEC 
(MYOG+), neuroTEC (NEUROD1+), ciliated TECs (FOXJ1+) and a TEC sub-
set resembling ionocytes and tuft cells (FOXI1+) (Fig. 4a,b). mTECIII 
was marked by strong expression of KRT10, and IBEX imaging clearly 
placed KRT10+ cells at the HCs in accordance with the known asso-
ciation of mTECIII with these structures27 (Fig. 4f,g). Both Visium and 
IBEX mapping of mTECI–III highlighted a gradient-like localization 
pattern with mTECI displaying a broad distribution across the medulla 
and mTECIII almost exclusively located in medullary levels 2 and 3 
(Fig. 4c,e). This mTEC distribution was highly conserved between the 

fetal and paediatric thymus (Fig. 4c). Similarly, a high degree of devel-
opmental conservation was observed for most mimetic TECs, which 
were predominantly detected in the deep medullary layers, with the 
exception of ciliated TECs, which were enriched at the fetal CMJ versus 
the paediatric medulla (Extended Data Fig. 6a,b).

mcTECs were defined based on intermediate levels of cTEC and 
mTEC markers and high expression of stem cell markers KRT15 and 
ITGA615,24,28 (Fig. 4b). They were further characterized by the expres-
sion of DLK2 (reported previously3), IGFBP6, CCN2 and CCL2. Visium 
and IBEX mapping of mcTECs in paediatric thymus indicated their 
predominant location in the capsule. Moreover, a second population 
was detected around the medullary CMJ (Fig. 4c,e), in line with their 
junctional location in mouse29,30. Further refinement of the position of 
CMJ-associated mcTECs using histological annotations revealed that 
they were mostly localized in the PVS of the paediatric thymus (Extended 
Data Fig. 6c,d), which aligns with recent suggestions of the subcapsular 
regions and PVS as TEC progenitor niches20. Using the keratin expression 
profile of mcTECs in the scRNA-seq data (KRT8−KRT5+KRT14+), we were 
also able to identify putative mcTEC niches in the paediatric capsule 
and CMJ in our IBEX data (Fig. 4f,g (insets 1 and 4)). Through integrated 
analysis of single-cell, Visium and IBEX data, we found that capsular 
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mcTECs displayed priming towards cTEC fate, while CMJ mcTECs were 
either more mTEC-primed or unprimed (Supplementary Note 5). Visium 
mapping predicted fetal mcTECs to be strongly enriched in (sub)cap-
sular regions, but, in contrast to paediatric thymus, no enrichment was 
detected at the CMJ (Fig. 4c). We confirmed this using single-molecule 
fluorescence in situ hybridization (RNAscope), which demonstrated 
a clear capsular localization of cells expressing the mcTEC markers 
DLK2 and IGFBP6 in the fetal thymus (Extended Data Fig. 6e). Finally, 
multiplexed RareCyte protein imaging possibly indicated the pres-
ence of proliferating epithelial cells (CD45−PanCK+Ki-67+) in distinct 
subcapsular zones of the early fetal thymus (p.c.w. 12), indicating the 
location of the putative proliferating mcTEC niche. The paediatric cap-
sule contained no such cells, but some PVS regions in CMJ and medulla 
displayed epithelial cells (CD45−PanCK+) representing putative mcTEC 
niches (Extended Data Fig. 6f,g).

Overall, our data reveal the tissue niche of a putative TEC progeni-
tor population in capsular regions of the fetal thymus and suggest a 
partial shift in its localization towards junctional regions and PVS in 
the paediatric thymus.

mTEC association with HCs
HCs are composed of concentric layers of cornified epithelium pro-
duced by mTECIII keratinocytes27. These medullary structures have 
been implicated in negative selection31 and autoimmunity32,33 and 
reports have claimed their association with cell types such as Treg cells, 
B cells, plasmacytoid DCs (pDCs) and neutrophils34,35.

To investigate this further, we annotated HCs in Visium sections 
using TissueTag (Extended Data Fig. 2a,b). We then calculated the dis-
tance from each spot to the edge of the nearest HC and subset the data 
using a maximum distance cut-off of 350 μm (Fig. 5a and Extended Data 
Fig. 7a). In contrast to the CMA, which is nonlinearly anchored by three 
reference landmarks (capsule, cortex, medulla) and describes relative 
localization, the HC distance is linearly dependent on a single landmark 
and is therefore best suited for studying proximal associations (Fig. 5b).

Using this measure, we found that mTECIII, mTECII and specialized 
TECs were closely associated with HCs, followed by certain subsets of B 
cells, DCs and Treg cells (Fig. 5c). Importantly, these cells had also shown 
predominant enrichment in the deep medullary level 3 (Fig. 4c and Sup-
plementary Note 3). To better resolve whether specific types of cells 
were more strongly associated with medullary depth or with HCs, we 
compared the mean-weighted CMA position against the mean-weighted 
HC distance for all medullary cell types (Methods). Similar to our earlier 
observations of the main mTEC subtypes, mTECI showed the most 
superficial localization (Figs. 4c and 5d), whereas mTECII and mTECIII 
were found deeper along the CMA with mTECIII notably closer to HCs 
than mTECII (Fig. 5d). Among the specialized TECs, TEC-ciliated and 
mTECI-trans were the closest to HCs, with a mean-wighted distance 
located within a 110 μm radius, while TEC-neuro and TEC-myo were 
positioned further away. Importantly, several haematopoietic cell 
types (activated DCs (aDCs), B cells and Treg cells) were found at a simi-
lar medullary depth as the TEC subtypes but showed less association 
with HCs (Fig. 5d).

To investigate whether the expression of specific genes by medullary 
cells types exhibits a distinct organization around HCs independently 
of deconvolved data, we determined genes with medullary expression 
(n = 867) that were uniquely detected in a single cell type in our paediat-
ric scRNA-seq dataset (specialization genes (SGs); n = 184) (Fig. 5e and 
Methods). The highest number of SGs originated from mTECIII (93 SGs), 
followed by mTECII (58 SGs) and myo-TECs (18 SGs), with 20 SGs being 
associated with all remaining medullary cell types. Weighted spatial 
mapping of SGs to the CMA and HC distance revealed that mTECII- and 
mTECIII-associated SGs were the closest to HCs and deep in the medulla 
(Fig. 5e,f), in contrast to myo-TEC SGs, which were further away. Among 
mTECIII SGs closest to HCs, we noted two different groups of genes, 

one group associated with mucosal epithelia (including CXCL17, PSCA, 
MUC4), and the other a set of kallikrein-related peptidases (KLK6, KLK7, 
KLK8, KLK10) frequently found in keratinocytes.

To unravel the possible association of these SGs with mTECIII subsets, 
we performed trajectory analysis on the combined mTECII and mTECIII 
populations, revealing three distinct branches ending in mature mTECII 
and two mTECIII subsets (Fig. 5g,h). One mature mTECIII population, 
which we termed mTECIII-muc, was characterized by the expression 
of the previously identified mucosal SGs (Fig. 5i,j and Extended Data 
Fig. 7b,c), which are known to be expressed by the mucosal epithelia of 
the gut, lungs, stomach and kidneys36. The second branch population, 
termed mTECIII-skin, expressed classical keratinocyte genes, such as 
KRT10 and KRTDAP, and a number of kallikrein-related peptidases, 
which are normally involved in skin desquamation37 and marked the 
most differentiated state of that branch (Fig. 5i).

In summary, we show that cells in the thymic medulla can be distin-
guished on the basis of their localization along the CMA (medullary 
depth) and their proximity to HCs. This demonstrated that the mTECIII 
population is strongly associated with HCs and contains additional 
specialized cell subtypes expressing mucosal- and skin-related genes. 
By contrast, other specialized TEC subtypes and haematopoietic cell 
types were not universally associated with HCs and showed a stronger 
association with medullary depth.

Mapping thymocytes at high resolution
Traditionally, studies of thymic T cell development have relied on sur-
face markers for flow cytometric or imaging-based analysis, but these 
findings are proving to be difficult to relate to scRNA-seq data due to 
different abundances and delays between transcription and cell surface 
expression of marker genes. To overcome this issue, we performed 
CITE-seq using a 143-plex customized antibody panel against a broad 
range of cell surface markers commonly used in thymocyte research 
(Supplementary Table 6) in combination with single-cell TCR sequenc-
ing. Using this approach, we were able to annotate T cell developmental 
stages at a much higher resolution than when using scRNA-seq alone 
(Extended Data Fig. 8a and Supplementary Note 6). This substantially 
increased the number of identified discrete differentiation stages com-
pared to the small number of other studies that have recently applied 
CITE-seq to the human thymus12,38.

We then mapped the annotated thymocyte subsets to paediatric 
Visium data to determine their distribution along the CMA (details 
on CITE-seq annotation and mapping are provided in Supplementary 
Note 6). The distinction between immature, semi-mature and mature 
stages for CD4 and CD8 lineage thymocytes based on surface marker 
profiles (Extended Data Fig. 8b and Supplementary Note 6) revealed 
a notable difference in the localization of immature CD8 versus imma-
ture CD4 lineage thymocytes (Fig. 6a), which suggests divergence in 
their corticomedullary transition after positive selection and line-
age bifurcation. To investigate this in detail, we performed trajectory 
analysis on the CITE-seq data to predict the differentiation pseudotime 
of CD4 and CD8 lineage cells from initiation of positive selection to 
full maturity (Fig. 6b,c). Moreover, to obtain more continuous spatial 
mapping of the cells, we subjected the CITE-seq data to high-resolution 
Leiden clustering before Visium mapping. By transferring the mean 
CMA values of each cluster back onto the CITE-seq data (Methods), we 
were able to better locate cells in both space and developmental time, 
independent of discrete annotations, and could therefore explore the 
relationship between differentiation and migration.

We found that positively selected thymocytes were initially still 
located in the cortex and only in the subsequent CD4hiCD8lo stage 
a minority of cells had transitioned to the thymic medulla (Fig. 6d). 
CD4SP immature thymocytes were enriched in the medulla, as were 
CD4+ semi-mature and CD4+ mature cells, indicating that, for this 
lineage, the corticomedullary migration occurs soon after lineage 
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bifurcation (Fig. 6d (left)). By contrast, the majority of immature CD8+ 
cells was predicted to remain in the cortex, while they underwent 
co-receptor reversal from the CD4hiCD8lo to CD4−CD8+ phenotype 
(Fig. 6d (right) and Extended Data Fig. 8b). Similarly, semi-mature 

CD8+ cells were still found in the cortex in substantial numbers and only 
mature CD8+ cells were finally mainly detected in the medulla (Fig. 6d 
(right)). To further validate this relative delay in the corticomedul-
lary transition of CD8 lineage cells using IBEX, we applied our KNN 
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matching approach (ISS patcher) to annotate IBEX T cells and infer 
developmental pseudotimes using the CITE-seq data as a reference 
by leveraging the 19 protein targets covered by both antibody panels 
(Methods). This resulted in a predicted spatial distribution of CD4 and 
CD8 lineage cells that was highly similar to that previously obtained 

from Visium data (Fig. 6e,f), confirming differences in the migratory 
kinetics between the two lineages.

To examine which chemokines could be involved in this lineage- 
specific migration pattern, we assessed chemokine receptor kinetics 
at the RNA and protein level. In both lineages, expression of CXCR4 
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and CCR9 (also known as CD199) dropped in the positively selected 
and CD4hiCD8lo thymocytes, consistent with previous reports on 
their role in cortical retention through the cortically expressed 
chemokines CXCL12 and CCL2539,40 (Fig. 6g,h). Expression of CCR4 
(also known as CD194), which is known to mediate corticomedullary 
migration in response to CCL17 and CCL2239,41, increased throughout 
the CD4hiCD8lo stage, but while cells of the CD4 lineage remained 
CCR4high until the end of their migration window, immature CD8 line-
age thymocytes exhibited a swift reduction in receptor RNA and pro-
tein levels (Fig. 6g), suggesting diverging CCR4 expression patterns 
as a possible driving force behind the earlier medullary migration 
of CD4+ thymocytes. CCR7 (also known as CD197), which mediates 
responses to CCL19 and CCL21 and is essential for medullary homing 
and negative selection39, was upregulated in immature cells of both 
lineages. These observations align with a recent report on mouse 
thymocytes, which describes the staggered upregulation of CCR4 
and CCR7 and notes reduced CCR7-mediated chemotaxis of immature 
SP thymocytes41, which may explain our observed lack of migration 
of CCR7+ immature CD8SP thymocytes. Finally, CXCR3 (also known 
as CD183) was not detected in CD4 lineage cells but was upregulated 
in semi-mature CD8SP thymocytes, possibly indicating a role in the 
late stages of medullary entry for this lineage (Fig. 6g). Notably, we 
found that CXCR3 ligands (CXCL9, CXCL10, CXCL11) were expressed in 
a broad range of haematopoietic and stromal cells, whereas the CCR4 
ligands (CCL17, CCL22) were predominantly detected in aDC1–3 cells, 
B cells and at a low level in mTECII (Extended Data Fig. 8c). This sug-
gests that CD4 and CD8 lineage cells may be recruited to the medulla 
by different cell types.

In summary, by using two highly different spatial technologies in 
conjunction with a multimodal single-cell reference atlas, we reproduc-
ibly detect a substantial difference in the timing of corticomedullary 
migration for CD4 versus CD8 lineage thymocytes that is associated 
with differing expression profiles for the chemokine receptors CCR4 
and CXCR3.

Discussion
Next-generation cell atlases have the potential to transform our under-
standing of the human body at the cellular and tissue level. However, 
harmonization and integration of single-cell and spatial datasets 
remains a major hurdle for multigroup consortia. Here we present 
OrganAxis, a computational approach for converting discrete tissue 
annotations into a spatial topological model that can serve as a CCF for 
the diagonal integration of spatial data from unpaired samples. Owing 
to its derivation from well-defined histological tissue landmarks, it 
supports comparisons between datasets obtained from diverse spatial 
methods. By adapting the OrganAxis framework to the thymus, we 
established the CMA, which allowed us to obtain a holistic representa-
tion of the human thymus throughout early development. This enabled 
us to compare cytokine gradients and thymocyte trajectories in early 
fetal and postnatal life, identify age-specific TEC progenitor niches and 
explore the migration kinetics of conventional αβ lineage thymocytes 
(Supplementary Discussion).

Overall, the breadth and depth of our multimodal thymus cell atlas, 
together with the CMA framework, might provide a strategy for chart-
ing changes during thymic ageing and involution. The construction of 
a spatial human thymus atlas may aid tissue engineering efforts and 
offer insights into thymic pathologies, for example, myasthenia gravis, 
Down’s syndrome, DiGeorge syndrome and others, and in vitro tissue 
engineering efforts. Moreover, our ability to integrate both de novo 
generated and published datasets through the CCF empowers further 
refinement of our understanding of the thymus through the integration 
of additional datasets from diverse human populations and acquired 
using newly developed single-cell and spatial approaches. Beyond the 
thymus, the TissueTag and OrganAxis framework can be adapted to 

any tissue with consistent landmarks, enabling synthesis of knowledge 
about organs and tissues across different institutions and using a broad 
variety of spatial technologies.
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Methods

Data generation by institute
Metadata about scRNA-seq and CITE-seq samples, including informa-
tion on source study, cell enrichment and donor age, are provided 
in Supplementary Table 1. Information about spatial data, including 
Visium, IBEX, RareCyte and RNAscope, is provided in Supplementary 
Table 2. In brief, all CITE-seq data were generated at Ghent University 
and mapped to the human genome (GRCh38) at the Wellcome Sanger 
Institute (WSI). All other original scRNA-seq data and 10x Visium data 
were generated and mapped to the human genome (GRCh38) at WSI. 
All IBEX imaging was performed at the National Institute of Allergy 
and Infectious Diseases (NIAID), NIH. All non-IBEX imaging datasets 
(RareCyte, RNAscope, Visium H&E) were generated at WSI. No fetal 
work was performed at the NIH and at Ghent University.

Human fetal and paediatric data from several previous studies3,7,15,16 
were included and reanalysed from raw fastq files. Details on sample 
processing, ethics and funding are available in the respective publica-
tions; details on the origin of each sample are provided in Fig. 1c and 
Supplementary Tables 1 and 2.

For samples processed at WSI, paediatric samples were obtained 
from cardiac corrective surgeries and provided by Newcastle University 
collected under REC approved study 18/EM/0314 and Great Ormond 
Street Hospital under REC approved study 07/Q0508/43. Human 
embryonic and fetal material was provided by the joint MRC & Wellcome 
Trust (grant MR/006237/1) Human Developmental Biology Resource 
(http://www.hdbr.org) with written consent and approval from the 
Newcastle and North Tyneside NHS Health Authority Joint Ethics Com-
mittee (08/H0906/21+5). Samples processed at Ghent University were 
obtained according to and used with the approval of the Medical Ethical 
Commission of Ghent University Hospital, Belgium (EC/2019-0826) 
through the haematopoietic cell biobank (EC-Bio/1-2018). Samples 
processed at the NIH were obtained under NIAID MTA 2016-250 from 
the pathology department of the Children’s National Medical Center in 
Washington, DC, following cardiothoracic surgery from children with 
congenital heart disease. Use of these thymus samples for this study 
was determined to be exempt from review by the NIH Institutional 
Review Board in accordance with the guidelines issued by the Office 
of Human Research Protections. Informed consent was obtained from 
all donors or their legal guardians.

Sample processing and library preparation for 10x scRNA-seq at 
WSI
Surgically removed paediatric thymi were directly moved to HypoTher-
mosol (Sigma-Aldrich, H4416-100ML), shipped by courier with ice packs, 
and processed within 24 h from time of surgery. For scRNA-seq experi-
ments, we performed single-cell dissociation as described in the proto-
col available online (https://doi.org/10.17504/protocols.io.bx8sprwe). 
In brief, thymic tissue was finely minced and cell dissociation was per-
formed using a mixture of liberase TH (Roche, 05401135001) and DNase I  
(Roche, 4716728001) for ~30–60 min in two rounds. Digested tissue was 
filtered through a 70 μm strainer and digestion was stopped with 2% 
FBS in RPMI medium. Red blood cell lysis was then performed on the 
cell pellet using RBC lysis buffer (eBioscience, 00-4333-57), after which 
cells were washed and counted. Magnetic and/or FACS sorting were 
performed to enrich stromal populations. Magnetic sorting to enrich 
for EPCAM+ or to deplete CD45+ or CD3+ cells was performed for U09, 
U48 and Z11 samples (Supplementary Table 1) using a magnetic sorting 
kit from Miltenyi Biotec including LS Columns (130-042-401) and the 
following bead-tagged antibodies: human CD45 MicroBeads (130-045-
801), human CD326 (EPCAM) MicroBeads (130-061-101), human CD3 
MicroBeads (130-050-101). Z11 and U40 samples were FACS-sorted to 
enrich for CD45− stromal cells (Z11) or to obtain both CD45− cells and 
total TECs (U40) (Supplementary Table 1). To perform FACS sorting, 
cells were resuspended in FACS buffer (0.5% FBS and 2 mM EDTA in PBS), 

blocked with TruStainFcX (BioLegend, 422302) for 10 min and were 
stained with antibodies against EPCAM (anti-CD326 PE, 9C4, BioLegend, 
324206), CD45 (anti-CD45 BV785, HI30, BioLegend, 304048), CD205 
(anti-CD205 (DEC-205) APC, BioLegend, 342207) and CD3 (anti-CD3 
FITC, OKT3, BioLegend, 317306) and DAPI for 30 min. All antibod-
ies were diluted 1:50 for staining. After staining, cells were washed 
and sorted using Sony SH800 or Sony MA900 sorters with a 130 μm  
nozzle. Samples were first gated to remove debris and dead cells, but 
no singlet gate was applied to ensure large TECs would not be excluded. 
For samples stained with anti-CD45, total CD45− cells were sorted to 
enrich for stroma. For EPCAM/CD205-stained cells, EPCAM+CD205− 
and EPCAM−CD205+ cells were sorted to obtain the total TEC fraction 
including cortical and medullary epithelial cells but exclude auto-
fluorescent cells (Supplementary Fig. 19a). FCS Express v.7.18.0025 
was used for data analysis. After sorting/enrichment, cells were 
resuspended in collection buffer to the recommended concentration  
(106 cells per ml) and loaded to capture around 8,000–10,000 cells on 
the 10x Genomics chromium controller to generate an emulsion of cells 
in droplets using Chromium Next GEM Single Cell 5′ Kit v2 (1000263). 
GEX and TCR-seq libraries were further prepared using the Library 
Construction Kit (1000190) and Chromium Single Cell Human TCR 
Amplification Kit (1000252) according to the manufacturer’s instruc-
tions. Sequencing was performed on the NovaSeq 6000 sequencer  
(Illumina). Additional details are provided in Supplementary Table 1.

Curation of published datasets
Data from several previous studies3,7,15,16 are included in this Article. 
For public datasets deposited on ArrayExpress, paired-end fastq files 
were downloaded from ENA, and the .sdhf file was used to determine 
the type of experiment (3′/5′ and the version of 10x Genomics kit). For 
public datasets deposited on GEO, if the data were deposited as a Cell 
Ranger .bam file, URLs for the bam files were obtained using srapath 
v.2.11.0. The .bam files were downloaded and converted to .fastq files 
using 10x bamtofastq v.1.3.2. If GEO data were deposited as paired-end 
fastq files, sra files were located using the search utility from NCBI 
entrez-direct v.15.6, downloaded and converted to fastq files using 
fastq-dump v.2.11.0. Sample metadata were curated from the abstracts 
deposited on GEO. Finally, published datasets that had been generated 
at WSI were downloaded from iRODs v.4.2.7 in the form of cram files 
and converted to fastq files using samtools v.1.12. using the command 
‘samtools collate -O -u -@16 $CRAM $TAG.tmp | samtools fastq -N -F 
0×900 -@16 −1 $TAG.R1.fastq.gz −2 $TAG.R2.fastq.gz -’. Sample meta-
data were obtained using the imeta command from iRODs.

Processing of published and newly generated scRNA-seq and 
TCR-seq datasets at WSI
After fastq file generation, 10x Genomics scRNA-seq experiments were 
processed using the STARsolo pipeline detailed on GitHub (https://
github.com/cellgeni/STARsolo). A STAR human genome reference 
matching Cell Ranger GRCh38-2020-A was prepared as per instruc-
tions from 10x Genomics. Using STAR v.2.7.9a and the previously col-
lected data about sample type (3′/5′, 10x Genomics kit version), we 
applied the STARsolo command to specify UMI collapsing, barcode 
collapsing, and read clipping algorithms to generate results maximally 
similar to the default parameters of the “cellranger count” command 
in Cell Ranger v.6: “--soloUMIdedup 1MM_CR --soloCBmatchWLtype 
1MM_multi_Nbase_pseudocounts --soloUMIfiltering MultiGeneUMI_CR 
--clipAdapterType CellRanger4 --outFilterScoreMin 30”. For cell filter-
ing, the EmptyDrops algorithm of Cell Ranger v.4 and above was invoked 
using “--soloCellFilter EmptyDrops_CR”. The option “--soloFeatures 
Gene GeneFull Velocyto” was used to generate both exon-only and 
full length (pre-mRNA) gene counts, as well as RNA velocity output 
matrices. TCR-seq samples were processed using Cell Ranger v.6.1.1 
with VDJ reference vdj-GRCh38-alts-5.0.0. The default settings of the 
reference-based “cellranger vdj” command were used. Fastq files were 
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converted to <Sample>_S1_L001_R1_001.fastq.gz format to be compat-
ible with Cell Ranger.

scRNA-seq quality control, data integration and annotation
Jupyter notebooks used for data quality control, preprocessing, inte-
gration and annotations are available in the GitHub repository for this 
manuscript (Code availability). Scanpy v.1.9.1 with anndata v.0.10.7 
and the statistics and plotting libraries pandas v.2.2.2, numpy v.1.26.4, 
scipy v.1.13.0, seaborn v.0.13.2 and matplotlib v.3.8.4 were used for data 
analysis and visualization. Mapped libraries were subjected to compu-
tational removal of ambient RNA using CellBender42 v.0.1.0. Next, all 
datasets underwent cell quality-control filtering and cells with <400 
or > 6500 genes, >6% mitochondrial reads or <5% ribosomal counts 
were removed. Doublets were annotated using Scrublet43 v.0.2.3. Next, 
datasets were integrated with scVI from scvi-tools44 v.0.19.0, for which 
mitochondrial, TCR and cell cycle genes were removed, and cells were 
annotated into major lineages (cell_type_level_0: T_DN, T_DP, T_SP, Epi-
thelial, Stroma, Myeloid, RBC, B and Schwann) by Leiden clustering. 
Individual cell lineages were then separated and integrated with scVI to 
perform fine-grained annotation and remove remaining doublets picked 
up by manual annotation. Cell annotations were assigned based on four 
sequential steps: (1) high-resolution Leiden clustering was performed 
to find all potential cell clusters. (2) Annotations of new cells generated 
in this study were predicted (i) based on KNN graph majority voting of 
neighbouring cells with annotations from previous studies by adaptation 
of the weighted KNN transfer solution from scArches45, or (ii) automatic 
label transfer using CellTypist46 v.1.6.2 with the Developing_Human_ 
Thymus or Pan_Fetal_Human models. (3) Calling the cell type annotation 
for a given cluster was then informed by a combination of the predicted 
labels and by marker genes reported in the literature. (4) Additional QC 
was performed and newly detected doublet clusters were removed where 
applicable. Steps 1–4 were repeated until final, fine-grained annotations 
were reached for the highest resolution (cell_type_level_4). Importantly, 
cell clusters that passed quality control but that we could not confidently 
assign to a defined cell type either in the literature or by cell markers 
by the strategy described above, were kept in the integrated object as 
‘cell_type_level_4_explore’, which we recommend for future exploration 
and validation of these cell states. Annotations in ‘cell_type_level_4’ were 
grouped into five hierarchical levels from the finest (cell_type_level_4) 
to the broadest (cell_type_level_0) (Supplementary Table 7).

Single-cell TCR-sequencing data were processed using Dandelion47 
v.0.3.1, and a detailed notebook can be found in the GitHub repository 
for this Article (see Code availability). In brief, a Dandelion class object 
with n_obs was constructed from all combined TCR libraries. Cells were 
then further subset to only include DP and SP subtypes that contained 
V and J rearrangements for both TRB and TRA loci. Next, milo neigh-
bourhoods were constructed based on scVI neighbourhood graphs 
(n_neighbors = 100) and VDJ genes and frequency feature space was 
calculated.

mTEC trajectory analysis
The scFates package48 v.1.0.7 was used for trajectory analysis on the 
combined mTECII and mTECIII cells. mTECII and mTECIII cells from the 
paediatric scRNA-seq dataset were reintegrated and batch-corrected 
using scVI. Next, the object was preprocessed according to recom-
mendations from Palantir49 and the scVI latent embedding was used 
as an input to ‘palantir.utils.run_diffusion_maps’ (Palantir v.1.3.3). Tree 
learning was performed using scf.tl.tree by using multiscale diffusion 
space from Palantir as recommended by scFates. Next, the node that 
was characterized by expression of some mTECI markers (ASCL1, CCL21) 
together with mTECII markers (AIRE, FEZF2) was used as a root to com-
pute pseudotime using scf.tl.pseudotime. Finally, milestones obtained 
after running the pseudotime were used to adjust the annotations.  
To derive differentially expressed genes across pseudotime branches, 
we applied the scf.tl.test_fork function, followed by scf.tl.branch- 

specific as described in the scFates article48. In brief, it fits a generalized 
additive model for each gene using pseudotime, branch and interaction 
between pseudotime and branch as covariates; two-sided P values were 
extracted for the interaction term (pseudotime:branch) and corrected 
using FDR to obtain significant differentially expressed genes. Next, 
these genes were tested for upregulation in each branch and assigned 
to different branches based on a cut-off of 1.3-fold upregulation.

mcTEC differentiation potential analysis
The STEMNET package50 (v.0.1) was used to determine the differentia-
tion potential of mcTEC progenitor cells. For this purpose, only mTEC, 
cTEC and mcTEC(-Prolif) cells were retained in the dataset. mTECI/II/III 
and cTECI/II/III were set as maturation endpoints and the probability 
of each cell to adopt any of these six possible fates was calculated. To 
identify priming of mcTEC(-Prolif) towards mTECI versus cTECI fate, we 
derived a priming score by calculating the difference between the pos-
terior probabilities for these two fates for each cell. Cells with priming 
score <−0.5 or >0.5 were labelled as mTECI-primed and cTECI-primed, 
respectively, whereas all other cells with comparable mTECI and cTECI 
potential were deemed to be unprimed.

Formulation of the CMA with OrganAxis
OrganAxis is a mathematical model aimed to derive the relative, signed 
position of a point in space in respect to two morphological landmarks. 
The OrganAxis base function H is highly flexible and tuneable with 
respect to the research question, spatial resolution and sampling 
frequency. In Supplementary Notes 1 and 2, we provide a detailed 
guide on tissue annotations with TissueTag v.0.1.1 and the details of 
OrganAxis derivation. The CMA is an extrapolation of OrganAxis, 
which is defined by a weighted linear combination of two H functions 
(CMA = 0.2 × H(edge-to-cortex) + 0.8 × H(cortex-to-medulla)). All IBEX 
and Visium images were annotated with TissueTag v.0.1.1 at a resolu-
tion of 2 um per pixel (ppm = 0.5). Then, annotations were transferred 
to a quasi-hexagonal grid that was generated by placing points with 
r-microns spacing in the x and y directions and staggering every other 
row by r/2. Throughout this study we used r = 15. L2 distances to broad 
level annotations (annotation_level_0) and the corresponding CMA 
values were calculated with k = 10 for all spots in the hexagonal grid. L2 
distances to fine annotations (annotation_level_1) were calculated with 
k = 1. CMA and L2 distances were then transferred to spots in Visium 
datasets or nuclei segmentations for IBEX by nearest-neighbour map-
ping and were therefore spatially homogeneous for these two spatial 
technologies.

To provide a common reference, we also binned the axis to a sequen-
tial discrete space for the entire thymus by ten levels (capsular, sub-
capsular, cortical level 1, cortical level 2, cortical level 3, cortical CMJ, 
medullary CMJ, medullary level 1, medullary level 2, medullary level 3;  
details are provided in Supplementary Note 2 and Supplementary 
Table 8).

10x Visium spatial transcriptomics sample processing and 
sequencing
Resected fetal and paediatric thymi were directly moved to HypoTher-
mosol (Sigma-Aldrich, H4416-100ML) (paediatric samples) or cold PBS 
(fetal samples), shipped by courier with ice packs and processed within 
24 h from time of surgery. For embedding, fetal or paediatric thymus 
tissue was first transferred to PBS and then placed onto ice for a few 
minutes to clear away any excess medium and preservation liquid (such 
as HypoThermosol). Next, as much liquid as possible was removed from 
the sample and, if necessary, the tissue was trimmed to fit into a cryo-
mold. The sample was placed into a cryomold (Tissue-Tek, AGG4581) 
filled with OCT (Leica biosystems, 14020108926) and positioned 
according to the desired orientation. The cryomold was then placed 
in isopentane that had been equilibrated to −60 °C and left to fully 
freeze for 2 min. The sample was then rested on dry ice to allow draining 



of the isopentane. Finally, the cryomolds were wrapped in foil and 
stored at −80 °C. On the day of sectioning, the samples were removed 
1 h before sectioning and placed into the cryostat (Leica biosystems) 
at −18 °C to equilibrate. Tissue was sectioned (section thicknesses are 
provided in Supplementary Table 2) and sections were placed onto 
Visium slides according to the manufacturer’s protocol. The sections 
were stained with H&E and imaged at ×20 magnification (Hamamatsu 
Nanozoomer 2.0 HT). Libraries were further processed according to 
the manufacturer’s protocol (Visium Spatial Gene Expression Slide & 
Reagent Kit, 10x Genomics, PN-1000184) (permeabilization times are 
shown in Supplementary Table 2). The samples were sequenced on 
the NovaSeq 6000 sequencer (Illumina) and the obtained fastq files 
were mapped with Space Ranger (10x Genomics; version numbers are 
provided in Supplementary Table 2).

Visium preprocessing, image registration and annotation
To process the Visium histology image data in higher resolution than 
the SpaceRanger defaults, we built a custom pipeline to extract an 
additional layer of image resolution at up to 5,000 pixels (hires5K), 
which we found to be more suitable for morphological analysis. We also 
developed our own fiducial image registration pipeline for increased 
accuracy where the fiducials are detected with cellpose v.2.1.1 and 
RANSAC from scikit-image v.0.22.0 is used for affine registration of 
reference fiducial frame (information provided by 10x Genomics). 
Lastly, for flexible tissue detection, we used Otsu thresholding with 
an adjustable threshold.

We subsequently used TissueTag v.0.1.1 for semiautomated image 
annotation (Supplementary Note 1). Cortical and medullary pixels were 
predicted with a pixel random forest classifier by generating training 
annotations based on spots with the highest gene expression of AIRE 
(for medulla) and ARPP21 (for cortex). Automatic cortex/medulla anno-
tations were then adjusted manually where necessary. Moreover, we 
manually annotated individual thymic lobes and specific structures, 
such as capsule/edge, freezing/sectioning artefacts, HCs, PVS and fetal 
thymus-associated lymphoid aggregates (as defined previously16). The 
morphological annotation and evaluations were done in consultation 
with expert human thymic pathologists. A full example of the Visium 
processing pipeline and annotation is provided on the GitHub reposi-
tory for this Article (see Code availability).

Spatial Visium mapping with cell2location
To ensure the best possible matching between Visium and single-cell 
profiles, we performed spatial mapping using cell2location51 v.0.1.3 
separately for fetal and paediatric datasets. We therefore subset our 
single-cell reference datasets according to either fetal or paediatric 
stage and removed rare cell types that were predominantly found in 
one of these stages. We then further removed cell types that showed 
stress signatures (which we believed to originate from technical factors) 
and cell types with the total number of cells < 40. A list of cell types that 
were excluded and the exclusion criteria are provided in Supplementary 
Table 9. Before cell2location deconvolution, we removed cell cycle 
genes (Supplementary Table 10) and mitochondrial genes, as well as 
TCR genes using the regex expression ‘^TR[AB][VDJ]|^IG[HKL][VDJC]’. 
We then further calculated highly variable genes and used relevant 
metadata cofactors (sample, chemistry, study, donor, age) to correct 
for batch effects in the cell2location model.

Quality control and batch correction of Visium data
After deconvolution, all Visium data were subjected to filtering based 
on read coverage and predicted cell abundance. Spots with fewer than 
1,000 genes per spot or fewer than 25 predicted cells were omitted. 
Furthermore, annotated tissue artefacts and areas not assigned to a spe-
cific structure were removed. Next, to generate a common embedding 
we performed scVI integration after removing cell cycle, mitochondrial 
and TCR genes from the highly variable gene selection. scVI training 

was performed with ‘SampleID’ as the batch key, ‘SlideID, Spaceranger, 
section_thickness(um)’ as categorical covariates, and ‘Age(numeric), 
n_genes_by_counts’ as continuous covariates.

Before performing any association analysis with the CMA, we further 
removed lobules (based on ‘annotations_lobules_0’) that had no or 
small medullar or cortical  regions, as we expected our CMA model to 
be less accurate in these cases.

PCA cumulative contribution of CMA
To estimate the dependency of the axis on spot gene variance across 
samples, we first normalized to a target sum of 2,500 counts and per-
formed log transformation followed by combat regression (https://
scanpy.readthedocs.io/en/stable/api/generated/scanpy.pp.combat.
html) by sample to adjust for the batch effect of individual samples. 
We then computed the PCA for batch-corrected gene expression and 
calculated the Spearman correlation between the first ten PCs and CMA 
or the number of genes detected per spot (n_gene_by_counts). Note 
that number of genes per spot, in our hands, was mostly influenced 
by inconsistent permeabilization during Visium library preparation 
and constituted the largest technical source of within-sample variance 
that we found in both fetal and paediatric Visium samples. To estimate 
the cumulative contribution of either CMA or the number of genes per 
spot, we multiplied the Spearman’s R with the percentage cumulative 
explained variance of the first 10 PCs.

Cytokine clustering by expression along the binned axis in 
Visium data
To analyse cytokine gradients based on the spatial distribution across 
CMA bins, we first selected a group of 65 cytokines that were broadly 
expressed from the CellphoneDB database (v.4.1.0, genes annotated as 
‘Cytokine’, ‘growthfactor | cytokine’, ‘cytokine’, ‘cytokine | hormone’). 
We excluded cytokines that were expressed in less than 5% of the spots 
in all CMA bins. We then performed hierarchical clustering on gene 
expression batch-corrected (combat) fetal Visium samples of the stand-
ardized mean expression of genes across bins using the Ward linkage 
method with the linkage function from the scipy.cluster.hierarchy 
module. A heat map was generated using the matrixplot function from 
the scanpy package52.

Cytokine two-way ANOVA analysis and cosine similarity on 
binned axis Visium data
To compare the distribution of cytokines across developmental groups 
(fetal versus paediatric) and identify differentially distributed genes, we 
implemented a two-way ANOVA approach. We initially log-normalized 
Visium gene expression, then removed lobules for which not a single 
cortex or medulla Visium spot was detected to increase CMA confi-
dence in both datasets. Data were grouped by mean expression per 
sample and CMA bin, such that each sample had a single datapoint per 
CMA bin; n = 16 (paediatric) and n = 12 (fetal) samples. Cosine similar-
ity was calculated based on the median values of the pooled sample 
bins between fetal and paediatric gene profiles with sklearn.metrics.
pairwise.cosine_similarity from scikit-learn v.0.22.0. Two-way ANOVA 
for age group (fetal versus paediatric) and CMA bin was calculated with 
statsmodels.api.stats.anova_lm(model, type=2). P values for main and 
interaction effects were Bonferroni corrected with statsmodels.stats.
multitest.multipletests (pvals, alpha=0.05, method=‘bonferroni’). For 
the full report of the results refer to Supplementary Table 5.

Cell- and gene-weighted mean CMA location on Visium data
To estimate the average position of a cell or gene distribution along 
CMA and HC axes (L2 distance to the nearest HC), spots with low gene 
expression were filtered out by using appropriate thresholds (0.2 for 
scVI corrected gene expression and 0.5 for predicted cell abundances). 
The position of a gene or cell was then calculated according to the fol-
lowing formula: for every gene/cell and axis positions, the weighted 
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mean was calculated as a dot product of spot cell abundance values 
and CMA position divided by the sum of the cell abundance values 
across spots.

Identification of cell-type-specific SGs
To identify genes exclusively expressed in a specific cell type or subset 
thereof (‘specialization genes’, SGs), we developed custom Python 
functions. Starting from raw read count, gene expression was scaled 
with scipy.stats.zscore(). Cells that showed expression below a cut-off 
of 0.05 and genes that had expression below 1.5 mean counts were 
excluded from further steps. Next, a quantile threshold (>95%) was 
used to select cells with the highest expression level of a specific gene. 
A χ2 test (scipy chi2_contingency) was performed per gene to iden-
tify if the selected cells were over-represented in a specific cell type 
(cell_type_level_4_explore), indicating the gene to be a marker gene. 
Genes that were predicted to be expressed only in a single cell type (χ2 
α = 1 × 10−50) were considered to be SGs and used for further analyses.

IBEX clinical cohort details and sample preparation
Human thymus samples were obtained from the pathology depart-
ment of the Children’s National Medical Center in Washington, DC, after 
cardiothoracic surgery from children with congenital heart disease, 
as thymic tissue is routinely removed and discarded to gain adequate 
exposure of the retrosternal operative field. Use of these thymus samples 
for this study was determined to be exempt from review by the NIH Insti-
tutional Review Board in accordance with the guidelines issued by the 
Office of Human Research Protections. There were no genetic concerns 
for the patients in this cohort. Details about the cohort can be found in 
Supplementary Table 2. Human thymi were placed in PBS on receipt and 
processed within 24 h after surgery. Excess fat and connective tissue 
were trimmed and sectioned into <5 mm cubes. For IBEX imaging, human 
thymi were fixed with BD CytoFix/CytoPerm (BD Biosciences) diluted 
in PBS (1:4) for 2 days. After fixation, all tissues were washed briefly 
(5 min per wash) in PBS and incubated in 30% sucrose for 2 days before 
embedding in OCT compound (Tissue-Tek) as described previously17,53.

IBEX sample imaging preparation
IBEX imaging was performed on fixed frozen sections as described pre-
viously17,53. In brief, 20 μm sections were cut on a CM1950 cryostat (Leica) 
and adhered to two-well chambered cover glasses (Lab-tek) coated with 
15 μl of chrome alum gelatin (Newcomer Supply) per well. Frozen sec-
tions were permeabilized, blocked and stained in PBS containing 0.3% 
Triton X-100 (Sigma-Aldrich), 1% bovine serum albumin (Sigma-Aldrich) 
and 1% human Fc block (BD Biosciences). Immunolabelling was per-
formed with the PELCO BioWave Pro 36500-230 microwave equipped 
with a PELCO SteadyTemp Pro 50062 Thermoelectric Recirculating 
Chiller (Ted Pella) using a 2-1-2-1-2-1-2-1-2 program. The IBEX thymus 
antibody panel can be found in Supplementary Table 3 and has been 
formatted as an Organ Mapping Antibody Panel54 (OMAP-17) acces-
sible online (https://humanatlas.io/omap). Custom antibodies were 
purchased from BioLegend or conjugated in house using labelling kits 
for Lumican (AAT Bioquest, 1230) and LYVE-1 (Thermo Fisher Scientific, 
A20182). A biotin avidin kit (Abcam, ab64212) was used to block endog-
enous avidin, biotin and biotin-binding proteins before streptavidin 
application. Cell nuclei were visualized with Hoechst 33342 (Biotium) 
and the sections were mounted using Fluoromount G (Southern Bio-
tech). Mounting medium was thoroughly removed by washing with PBS 
after image acquisition and before chemical bleaching of fluorophores. 
After each staining and imaging cycle, the samples were treated with two 
15 min treatments of 1 mg ml−1 of LiBH4 (STREM Chemicals) prepared in 
deionized H2O to bleach all fluorophores except Hoechst.

IBEX image acquisition and alignment
Representative sections from different tissues were acquired using 
the inverted Leica TCS SP8 X confocal microscope with a ×40 objective 

(NA 1.3), 4 HyD and 1 PMT detectors, a white-light laser that produces 
a continuous spectral output between 470 and 670 nm as well as 405, 
685 and 730 nm lasers. Panels consisted of antibodies conjugated to the 
following fluorophores and dyes: Hoechst, Alexa Fluor (AF)488, FITC, 
AF532, phycoerythrin (PE), eF570, AF555, iFluor 594, AF647, eF660, 
AF680 and AF700. All images were captured at an 8-bit depth, with a 
line average of 3 and 1024 × 1024 format with the following pixel dimen-
sions: x (0.284 μm), y (0.284 μm) and z (1 μm). Images were tiled and 
merged using the LAS X Navigator software (LAS X v.3.5.7.23225). For 
IBEX tissue imaging, multiple tissue sections were examined before 
selecting a representative tissue section that contained several distinct 
lobules with multiple functional units, often resulting in an unusu-
ally shaped region of interest. Fluorophore emission was collected 
on separate detectors with sequential laser excitation of compatible 
fluorophores (3–4 per sequential) used to minimize spectral spillover. 
The Channel Dye Separation module within LAS X v.3.5.7.23225 (Leica 
Microsystems) was then used to correct for any residual spillover. 
For publication-quality images, Gaussian filters, brightness/contrast 
adjustments and channel masks were applied uniformly to all images. 
Image alignment of all IBEX panels was performed as described previ-
ously using SimpleITK55,56. Additional details on antibodies, protocols 
and software can be found on the IBEX Knowledge-Base (https://doi.
org/10.5281/zenodo.7693279).

IBEX 3D single nuclei segmentation with cellpose
IBEX images were converted from .ims format (Imaris, Oxford Instru-
ments, v.9.5.0 and v.10.0.0) to 3D stacks (TIFF) by individual channels 
with FIJI v.1.54j. We then applied a custom pipeline for 3D single nuclei 
segmentation with cellpose v.2.1.1:
(1)  Image preparation: individual TIFF images were separated by z plane 

and channel and the sample channel metadata were extracted as a 
.csv file. The nuclear staining channel (Hoechst) was located, and 
a set of tiled 3D image arrays was generated.

(2)  Segmentation: the image arrays were sequentially segmented 
with cellpose using specific parameters, for example, diameter, 
resampling, anisotropy, thresholds and batch size. We used tiles 
to overcome restrictions on GPU and RAM resources.

(3)  Restitching and formatting: after segmentation, tiles were stitched 
back together, and all segmentation masks were stored in a 
uint32-bit image format to hold more than 65,535 mask labels, as a 
typical sample produces 200,000–700,000 cell masks.

(4)  Handling high nuclear density: the high nuclear density, especially in 
the thymic cortex, produced scenarios in which segmentation masks 
were often bordered by neighbouring cells, resulting in substantial 
inter-cell signal bleed. To overcome this issue, we excluded pixels 
in the interface between two cells such that the mask boundary was 
preserved if no neighbouring cell was present.

(5)  Mask filtering: we removed small cell masks to avoid noise and cell 
fragments using skimage.morphology.remove_small_objects.

(6)  Signal intensity extraction: for each cell mask post-filtering, we 
extracted the mean and maximum signal intensity for each channel 
in the IBEX image. This produced a cellXprotein file for each sample.

(7)  Data merging: once all sample single-cell segmentations were col-
lected, we merged all samples (n = 8) and stored metadata, channel 
and spatial information in a unified AnnData object, totalling more 
than 1.1 million cells.

Label transfer to IBEX cells from scRNA-seq and CITE-seq 
reference atlas with ISS patcher
We used a KNN algorithm to compare the annotated cell types in our 
scRNA-seq reference atlas with the IBEX single-cell segmentations. 
For this purpose, the protein expression in the IBEX query cells was 
matched with the RNA expression of the corresponding genes in the 
scRNA-seq reference. Protein and gene names were matched according 
to Supplementary Table 11. Batch effects were removed from IBEX with 
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scanpy.pp.combat(ibex_gene, key=‘sample’, inplace=True). We next 
subsetted each IBEX sample and ran the KNN prediction algorithm per 
sample with k = 30, including the following steps:
(1)  The shared feature space between the two objects was identified, 

log-normalized and z-scored on a per-object basis.
(2)  The KNN of the low-dimensional observations (IBEX) in the high- 

dimensional space (GEX) were identified. The counts of absent fea-
tures were imputed as the mean of the high-dimensional neighbours.

(3)  On the basis of majority voting, the most frequent cell annotation in 
the GEX reference was assigned to the IBEX query cell. The propor-
tion of KNNs that contributed to the majority voting was recorded 
as the evidence fraction (KNNf). For example, if out of the 30 nearest 
neighbours, 13 were labelled as A, 10 as B and 7 as C in GEX, then 
the IBEX cell received the label A. The fraction in this case refers to 
the proportion of the 30 nearest neighbours that contributed to 
the majority label, which would be KNNf = 13/30 = 0.43 for label A.

In some of our IBEX samples AIRE staining in particular produced a 
relatively high level of non-specific signal and low signal-to-noise ratio. 
As a consequence, we identify some predicted AIRE+ mTECII cells that 
are not in the medulla and have capsular/cortical localization (Fig. 4g). 
We had cases of individual samples for which a specific antibody did 
not perform well or was missing (for example, for IBEX_01 the KRT10 
antibody was out of stock). However, as ISS patcher was run on each 
sample separately, this did not affect proper scaling of that marker and 
its use of it for mapping in other samples. Moreover, by selecting cells 
with a higher proportion of matched KNN cells from the single-cell data 
(KKNf) these effects are reconciled through the removal of cells with 
low-confidence mapping. We would like to flag this point for future 
researchers who want to reuse our datasets.

The general code for the ISS patcher KNN mapping algorithm can 
be found in the dedicated GitHub repository (https://github.com/
Teichlab/iss_patcher/tree/main) and the full example for KNN mapping 
using IBEX is reported in the GitHub repository for this Article (see 
Code availability).

To annotate T cell types in the IBEX data with high accuracy, we 
applied the ISS patcher with the CITE-seq T lineage data as a reference 
as follows: we first applied the KNN algorithm to IBEX data using the 
scRNA-seq reference atlas to identify and subset IBEX T lineage cells. 
We then used the CITE-seq data as a reference to repeat the KNN-based 
annotation on these selected cells. This KNN-based reannotation was 
performed on a hybrid RNA/protein reference, which included protein 
measurements for the 19 markers assayed in both CITE-seq and IBEX in 
addition to RNA measurements for the remaining 23 genes as described 
in Supplementary Table 11. We used the same KNN implementation 
as described above but with k = 7, while also imputing CD4 and CD8 
pseudotime.

Human thymus FFPE processing
Human paediatric samples were obtained from cardiac corrective 
surgeries. Removed thymi were directly moved to HypoThermosol 
(Sigma-Aldrich, H4416-100ML), shipped with a courier with ice packs 
and processed in under 24 h after surgery. After arrival, for FFPE pro-
cessing, the samples were cut to approximately 1 cm2 pieces with sharp 
scissors in 1× DPBS. Tissue pieces were then rinsed in clean DPBS to 
remove any excess HypoThermosol, patted dry with wipes (Kimtech) 
and placed into 10% formalin (cellpath, BAF-6000-08A) for 16–24 h at 
room temperature. The next day, tissues were dehydrated and embed-
ded in wax, then kept at 4 °C.

RareCyte immunostaining and 14-plex imaging
Multiplex immunofluorescence and single round imaging was per-
formed as described previously57. All steps were performed at room 
temperature unless stated otherwise. In brief, FFPE blocks were sec-
tioned using a microtome (Leica, RM2235) at 3.5–5 μm thickness and 

placed onto a superfrost slide (Thermo Fisher Scientific, 12312148). 
Slides were dried at 60 °C for 60 min to ensure that tissue sections 
had adhered to the slides. Tissue sections were deparaffinized and 
subjected to antigen retrieval using the BioGenex EZ-Retriever system 
(95 °C for 5 min followed by 107 °C 5 min). For OCT sections, 7 μm 
sections were taken using a cryostat (Leica CM3050S), placed onto 
SuperFrost Plus slides (VWR) and immediately submerged in 10% 
buffered saline formalin (Cellpath, BAF-6000-08A) for 1 h at room 
temperature. The samples were then subjected to the following steps 
similarly to the FFPE samples. To remove autofluorescence, slides 
were bleached with AF quench buffer (4.5% H2O2, 24 mM NaOH in PBS). 
The slides were quenched for 60 min using the ‘high’ setting with a 
strong white-light exposure followed by further quenching for 30 min 
using the 365 nm ‘high’ setting using a UV transilluminator. The slides 
were rinsed with 1× PBS and incubated in 300 μl of Image-iT FX Signal 
Enhancer (Thermo Fisher Scientific, I36933) for 15 min. The slides 
were rinsed again and 300 μl of labelled primary antibody staining 
cocktail was added to the tissue, which was subsequently incubated 
for 120 min in the dark within a humidity tray. All antibodies were 
prediluted according to company recommendations and were not 
adjusted further (Supplementary Table 4). The slides were washed 
with a surfactant wash buffer and 300 μl of nuclear staining in goat 
diluent was added to the slide. The slides were then incubated in the 
dark for 30 min in a humidity tray. The slides were then washed and 
placed in 1× PBS. Finally the slides were coverslipped using ArgoFluor 
mount medium and left in the dark at room temperature overnight 
to dry. The slides were imaged the next day using the RareCyte Orion 
microscope with a ×20 objective and relevant acquisition settings 
were applied using the software Artemis v.4.

RNAscope processing and imaging
For RNAscope analysis, thymus tissue was processed as described 
above for Visium sectioning. Sections were cut from the fresh frozen 
OCT-embedded (OCT, Leica) samples at a thickness of 10 μm using 
a cryostat (Leica, CM3050S) and placed onto SuperFrost Plus slides 
(VWR). Sections were stored at −80 °C until staining. The sections were 
removed from the −80 °C storage and submerged in chilled (4 °C) 4% 
PFA for 15 min, then acclimatized to room temperature 4% PFA over 
120 min. The sections were then briefly washed in 1× PBS to remove 
any remaining OCT. Then, the sections were dehydrated in a series of 
50%, 70%, 100% and 100% ethanol (5 min each) and air-dried before 
performing automated 4-plex RNAscope.

Using the automated Leica BOND RX, RNAscope staining was per-
formed on the fresh frozen sections using the RNAscope LS multiplex 
fluorescent Reagent Kit v2 Assay and RNAscope LS 4-Plex Ancillary 
Kit for LS Multiplex Fluorescent (Advanced Cell Diagnostics (ACD), 
Bio-Techne) according to the manufacturer’s instructions. All of the 
sections were subjected to 15 min of protease III treatment before 
staining protocols were performed. Before running RNAscope 
probe panels, the RNA quality of fresh frozen samples was assessed 
using multiplex positive (RNAscope LS 2.5 4-plex Positive Control 
Probe, ACD Bio-Techne, 321808) and negative (RNAscope 4-plex 
LS Multiplex Negative Control Probe, ACD Bio-Techne, 321838)  
controls.

The probes were labelled using Opal 520, 570 and 650 fluorophores 
(Akoya Biosciences, 1:1,000) and one probe channel was labelled using 
Atto 425-streptavidin fluorophore (Sigma-Aldrich, 1:500), which was 
first incubated with TSA–biotin (Akoya Biosciences, 1:400). The fol-
lowing RNAscope 2.5 LS probes were used for this study: Hs-AIRE 
(ACD Bio-Techne, 551248), Hs-LY75-C2 (ACD Bio-Techne, 481438-C2), 
Hs-CAMP-C3 (ACD Bio-Techne, 446248-C3), Hs-EPCAM-C4 (ACD 
Bio-Techne, 310288-C4), Hs-IGFBP6-C1 (ACD Bio-Techne, 496068) 
and Hs-DLK2-C3 (ACD Bio-Techne, 425088-C3). All nuclei were DAPI 
stained (Life Technologies, D1306). Details are provided in Supple-
mentary Table 12.

https://github.com/Teichlab/iss_patcher/tree/main
https://github.com/Teichlab/iss_patcher/tree/main
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Confocal imaging was performed on the Perkin Elmer Operetta CLS 

High Content Analysis System using a ×20 (NA 0.16, 0.299 μm px−1) 
water-immersion objective with 9-11 z-stacks with 2 μm step. Channels: 
DAPI (excitation, 355–385 nm; emission, 430–500 nm), Atto 425 (excita-
tion, 435–460 nm; emission, 470–515 nm), Opal 520 (excitation, 460–
490 nm; emission, 500–550 nm), Opal 570 (excitation, 530–560 nm; 
emission, 570–620 nm), Opal 650 (excitation, 615–645 nm; emission, 
655–760 nm). Confocal image stacks were stitched as individual z stacks 
using proprietary Acapella scripts provided by Perkin Elmer, and visual-
ized using OMERO Plus (Glencoe Software).

The contrast used for Extended Data Fig. 6e was as follows: DLK2 
(magenta 150–500), IGFBP6 (yellow 200–1500), LY75 (green 200–4000),  
EPCAM (red 300–2500).

CITE-seq tissue processing
Paediatric thymus samples from children undergoing cardiac surgery 
were obtained according to and used with the approval of the Medical 
Ethical Commission of Ghent University Hospital, Belgium (EC/2019-
0826) through the haematopoietic cell biobank (EC-Bio/1-2018). Thy-
mus tissue was cut into small pieces using scalpels and digested with 
1.6 mg ml−1 collagenase (Gibco, 17104-019) in IMDM medium for 30 min 
at 37 °C with regular agitation to generate a single-cell suspension. The 
reaction was quenched with 10% FBS and the thymocyte suspension 
was passed through a 70 μm strainer to remove undigested tissue. 
Cells were frozen in FBS containing 10% DMSO and stored in liquid 
nitrogen until needed.

CITE-seq antibody preparation
The TotalSeq-C Human Universal Cocktail 1.0 (BioLegend, 399905) was 
resuspended according to the manufacturer’s instructions. In brief, the 
lyophilized cocktail was equilibrated to room temperature for 5 min 
and then centrifuged at 10,000g for 30 s. Then, 27.5 μl cell staining 
buffer (BioLegend, 420201) was added and the tube was vortexed for 
10 s, incubated for 5 min at room temperature and vortexed again. 
The resuspended cocktail was centrifuged for 30 s at room tempera-
ture at 10,000g and the entire volume was transferred to a low-bind 
tube. Finally, the tube was centrifuged again at 14,000g for 10 min at 
4 °C and 25 μl of the supernatant was used per sample (2 × 106 cells  
in 200 μl).

In total, 13 TotalSeq-C antibodies (BioLegend) were titrated individu-
ally by flow cytometry using PE-conjugated versions of the same anti-
body clone as recommended by BioLegend. After choosing a suitable 
concentration for each antibody, a master mix was prepared for cell 
staining. For this, all antibodies were initially diluted in the cell staining 
buffer to obtain a concentration 100-fold higher than the desired final 
staining concentration. Then, 2 μl of each diluted antibody substock 
was combined in a master mix, which was added to the cells for label-
ling in a total volume of 200 μl. Details on the TotalSeq-C antibodies 
are provided in Supplementary Table 6.

CITE-seq sample preparation
Cells were thawed slowly by gradually adding 15 volumes of pre- 
warmed IMDM medium and pelleted at 1,700 rpm for 6 min at 4 °C. 
After resuspending in PBS, cells were passed through a 70 μm strainer 
to remove clumps. Enrichment for viable cells was achieved using a 
magnetic bead-based dead cell removal kit (Miltenyi, 130-090-101). 
For this, cells were pelleted as before, washed with 1× binding buffer 
(part of the kit, prepared with sterile distilled water) and resuspended 
in dead cell removal microbeads (part of the kit) at a concentration 
of 107 cells per 100 μl beads. After incubation at room temperature 
for 15 min, cells were applied to an LS column (Miltenyi, 130-122-729), 
which was prerinsed with 3 ml 1× binding buffer. The column was 
washed four times with 3 ml binding buffer and the flow-through con-
taining viable cells was collected. Cells in the flow-through were pel-
leted and viability was confirmed using trypan blue. A total of 2 × 106 

viable cells was used for TotalSeq-C and anti-CD3-PE antibody staining. 
For this purpose, cells were washed with cell staining buffer (BioLeg-
end, 420201), pelleted at 600g for 10 min at 4 °C and resuspended in 
90 μl cell staining buffer. Then, 10 μl Human TruStain FcX blocking 
solution (BioLegend, 422301) was added and cells were incubated 
for 10 min at 4 °C. The TotalSeq-C Human Universal Cocktail 1.0 (Bio-
Legend, 399905) was resuspended as described above, centrifuged 
at 14,000g for 10 min at 4 °C and 25 μl of the supernatant was added 
to the blocked cells. Individual TotalSeq-C antibodies were prepared 
as described above and 26 μl of the master mix was added to each 
sample. To facilitate enrichment of immature and mature thymocytes 
by FACS, 10 μl anti-CD3-PE (SK7, BioLegend, 344805) was added and 
the samples were topped up with 40 μl cell staining buffer resulting 
in a total staining volume of 200 μl. The samples were incubated for 
30 min at 4 °C in the dark. To wash off unbound antibodies, cell staining 
buffer was added to the samples, and cells were pelleted for 10 min at 
600g at 4 °C. All supernatant was removed, cells were resuspended in 
cell staining buffer, transferred to a new tube and pelleted as before. 
Cells were again resuspended in cell staining buffer and pelleted and 
this wash step was repeated once more before cells were resuspended 
in 200 μl MACS buffer (2% FCS, 2 mM EDTA in PBS) in preparation for 
sorting. Then, 1 μl propidium iodide (Invitrogen, 230111) was added for 
detection of dead cells and samples were sorted on the BD FACSAria 
III or BD FACSAria Fusion cell sorter using a 100 μm nozzle and a maxi-
mum flow rate of 4 (FACSDiva v.8.0.2, reanalysis with FlowJo v.10.8.2). 
Cells were gated using forward/side scatter to remove doublets and 
debris, then dead cells were excluded based on PI staining. CD3− and 
CD3+ cells were collected separately in cooled IMDM + 50% FCS (Sup-
plementary Fig. 19b). After completion of the sort, collection tubes 
were topped up with DPBS and cells were pelleted at 400g for 10 min 
at 4 °C. The supernatant was removed and cells were resuspended at 
an estimated concentration of 1,500 cells per μl in PBS + 0.04% BSA 
(Miltenyi, 130-091-376), of which 16.5 μl was used in the GEM genera-
tion step. The Next GEM Single Cell 5′ Kit v2 (10x Genomics, 1000265) 
was used to prepare the reaction master mix, and load cells, gel beads 
and partitioning oil on a Chip K (10x Genomics, 1000286) according 
to the manufacturer’s protocol CG000330 Rev A. GEMs were gener-
ated using a Chromium Controller (10x Genomics), transferred to a 
tube strip and reverse transcription was performed in a BioRad C1000 
Touch Thermal Cycler according to the protocol. The samples were 
stored at 4 °C overnight and the library preparation was carried out 
the next day.

CITE-seq library preparation and sequencing
Feature barcode (FB), gene expression (GEX) and TCR libraries were 
prepared according to protocol CG000330 Rev A (10x Genomics) 
using the Chromium Next GEM Single Cell 5′GEM Kit v2 (10x Genom-
ics, 1000244), Library Construction Kit (10x Genomics, 1000190), 5′ 
Feature Barcode Kit (10x Genomics, 1000256), Human TCR Amplifica-
tion Kit (10x Genomics, 1000252), Dual Index Kit TT set A (10x Genom-
ics, 1000215) and Dual Index Kit TN set A (10x Genomics, 1000250). 
The protocol version for >6,000 cells was followed and libraries were 
amplified for 13 cycles (cDNA), 14 cycles (GEX), 8 cycles (FB) or 12 + 10 
cycles (TCR libraries). Library quality and quantity were checked on the 
Bioanalyzer instrument (Agilent) using a high-sensitivity DNA assay. 
Libraries were pooled and sequenced on the NovaSeq 6000 instrument 
(Illumina) to a minimum of 25,000 reads per cell for GEX, 10,000 reads 
per cell for FB and 5,000 reads per cell for TCR libraries.

CITE-seq quality control and denoising
CITE-seq data were processed using the R packages Seurat58 (v.4.3.0), 
SeuratObject (v.4.1.4), SeuratDisk (v.0.0.0.9021), SingleCellExperi-
ment (v.1.24.0), Matrix (v.1.6-4), matrixStats (v.1.2.0), dplyr (v.1.1.4), 
tidyr (v.1.3.1), reshape2 (v.1.4.4), BiocNeighbors (v.1.20.2), BiocParal-
lel (v.1.36.0), stringr (V.1.5.1), reticulate (v.1.35.0) and sceasy (v.0.0.7). 



Data were visualized using ggplot2 (v.3.5.0), ggrastr (v.1.0.2), ggridges 
(v.0.5.6) and RColorBrewer (v.1.1-3).

Fastq files from FB libraries were mapped with Cell Ranger v.7.0.0. 
GEX libraries were mapped with STARsolo as described above for 
scRNA-seq data. CITE-seq data were first subjected to quality-control 
processing based on RNA properties as described above. For the 
retained high-quality cells, ADT data were then denoised using dsb 
(v.1.0.3)59. For this purpose, empty droplets were identified in the unfil-
tered mapping output and used as a reference for estimating noise and 
antibody background levels. Approximately 1.4 million droplets were 
selected on the basis of RNA count < 240 reads, ADT count between 120 
and 350 reads, and <5% mitochondrial reads to ensure that damaged 
cells were not included in the subset. During denoising and normali-
zation with DSBNormalizeProtein, ADT data from droplets were used 
for background correction and the seven isotype control antibodies 
included in the TotalSeq-C Human Universal Cocktail were used to 
determine technical variation. Data were scaled based on the back-
ground by subtracting the mean and then dividing by the standard 
deviation of the empty droplets. Negative values after denoising, 
which correspond to very low expression, were set to zero to improve 
interpretation and visualization. In an additional quality-control 
step, cells in which less than 100 of the antibodies were detected were 
removed from the dataset as technical artefact. Moreover, a subset of 
cells affected by aggregates of the antibodies against TCRγδ, CD199 
(CCR9), CD370, CD357 and XCR1 was removed from the dataset due to 
unreliable surface-staining properties.

CITE-seq annotation
Annotation of the CITE-seq data was carried out on integrated RNA and 
denoised ADT modalities. For this purpose, both data modalities were 
log-normalized and the top 2,000 highly variable genes were identified, 
followed by PCA on the scaled highly variable genes using the standard 
functions in the Seurat package. MNN correction was applied to the PCA 
loadings matrix using the reducedMNN function from the Batchelor 
package60 (v.1.18.1) to reduce batch and donor effects between samples. 
To integrate both modalities, multimodal neighbours and modality 
weights were identified and a weighted nearest neighbours (WNN) 
graph58 was constructed using FindMultimodalNeighbors based on the 
PCA. The number of PCs to be used was determined based on the dif-
ference in variation of consecutive PCs being higher than 0.1%. A UMAP 
visualization was generated based on the WNN graph to represent the 
weighted combination of both modalities. Furthermore, a supervised 
PCA (sPCA) was performed on transcriptome data using the RunSPCA 
function of the Seurat package to obtain dimensionality reduction for 
the RNA modality that represents the structure of the WNN graph58.

To identify cell types and developmental stages, we performed Lei-
den clustering at a low resolution based on the sPCA using the Seurat 
functions FindNeighbors and FindClusters. The obtained clusters 
were then subsetted and analysed individually starting with the most 
immature cluster, which was identified based on high expression of the 
surface marker CD34. For each subset, normalization and scaling for 
RNA and ADT data were repeated as described above and a new WNN 
UMAP and sPCA were constructed. A combination of Leiden clustering 
on the sPCA and thresholding of protein levels was used to identify cell 
types. Moreover, to identify proliferating cells, cell cycle scoring was 
performed using the G2M and S phase markers supplied in the Seurat 
package. The FindMarkers function (Seurat) and the package single-
CellHaystack61 (v.1.0.0) were used to identify differentially expressed 
genes and surface markers in a cluster-based and cluster-independent 
manner, respectively. Distinction of CD4 and CD8 lineage maturation 
stages was based on CD45RA, CD45RO and CD1a and identical expres-
sion cut-offs were used for both lineages to ensure that subsets would 
be directly comparable.

Paired TCR-seq data were processed with Dandelion47 v.0.3.1 
and information about productive or non-productive TRA and TRB 

rearrangements was extracted for each cell to validate cell type anno-
tations after clustering.

CITE-seq pseudotime analysis
To carry out trajectory inference for αβT lineage cells, CITE-seq data 
were subsetted to contain DP_pos_sel, DP_4hi8lo, SP_CD4_immature, 
SP_CD4_semi-mature, SP_CD4_mature, SP_CD8_immature, SP_CD8_
semi-mature and SP_CD8_mature cells. A new WNN UMAP was con-
structed based on surface protein and RNA. Slingshot62 (v.2.6.0) was 
used to establish a minimum spanning tree on the WNN UMAP using 
the getLineages function based on mutual nearest neighbour-based 
distance with DP_pos_sel set as start point and SP_CD4_mature and 
SP_CD8_mature specified as end points. Smooth lineages were obtained 
using the getCurves function and the derived pseudotime orderings 
were used to assess transcript and surface marker expression through-
out differentiation.

CITE-seq cell2location mapping, integration and processing
For the focused multimodal analysis, we subsetted the full scRNA-seq 
dataset to include only paediatric data and further removed T line-
age cells without CITE-seq protein information. We then performed 
cell2location as described above to obtain deconvolved cell type 
mapping based on CITE-seq annotations. In addition, as cell2loca-
tion deconvolves spots by unique pseudobulk expression profiles 
from a single-cell reference based on discrete cell annotations, the 
mapping resolution is limited to that of the annotated cell subsets. 
To investigate the continuous spatiotemporal nature of CD4/CD8 
cell lineages at increased resolution, we performed high-resolution 
Leiden clustering on the CITE-seq data using scanpy (resolution=35), 
resulting in 567 cell clusters. These cell clusters were then mapped 
to our paediatric Visium data with cell2location as described above. 
To measure the position of each cell cluster across the CMA, we 
selected Visium spots with the highest cluster label abundance 
(above percentile 95%) and calculated the weighted mean CMA val-
ues for these spots. This value was then assigned this to the cells 
comprising the associated cluster in the single-cell object. Fur-
ther details are provided in the GitHub repository for this Article  
(see Code availability).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The annotated fetal and paediatric integrated scRNA-seq atlas and 
Visium objects for this study can be explored online https://cellxgene.
cziscience.com/collections/fc19ae6c-d7c1-4dce-b703-62c5d52061b4. 
Paediatric CITE-seq data can be visualised and explored using a 
custom ShinyApp (https://ccgg.ugent.be/shiny/htsa_thymocyte_
citeseq/). Sequencing data for the newly generated libraries for 
scRNA-seq and Visium data were uploaded to ENA under accession 
code PRJEB77091. Several samples were obtained under consent agree-
ments that require data release with managed access, which is why 
these were deposited at EGA under accession code EGAD00001015384. 
Imaging data for Visium samples were deposited at BioImage Archive 
under accession number S-BIAD1257. CITE-seq data were uploaded 
to the GEO under accession number GSE271304. Imaging data gen-
erated for this study, including IBEX, RNAscope and RareCyte data, 
were deposited at the BioImage Archive under the accession number 
S-BIAD1257. Publicly available datasets were downloaded from the fol-
lowing sources: ref. 3 (ArrayExpress: E-MTAB-8581; GEO: GSE206710); 
ref. 15 (GEO: GSE159745); ref. 7 (GEO: GSE147520); and ref. 16 (Array-
Express: E-MTAB-11341). All accession codes are also listed in Supple-
mentary Tables 1 and 2. Source data are provided with this paper.

https://cellxgene.cziscience.com/collections/fc19ae6c-d7c1-4dce-b703-62c5d52061b4
https://cellxgene.cziscience.com/collections/fc19ae6c-d7c1-4dce-b703-62c5d52061b4
https://ccgg.ugent.be/shiny/htsa_thymocyte_citeseq/
https://ccgg.ugent.be/shiny/htsa_thymocyte_citeseq/
https://www.ebi.ac.uk/ena/data/view/PRJEB77091
https://ega-archive.org/datasets/EGAD00001015384
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE271304
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8581/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE206710
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159745
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147520
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Code availability
All code scripts and notebooks used in the study are open and available 
to the public. All code relating to analysis and figures in this manuscript 
has been deposited at GitHub (https://github.com/Teichlab/thymus_
spatial_atlas). Code for the TissueTag package is available at https://
github.com/Teichlab/TissueTag (https://github.com/nadavyayon/
TissueTag). Moreover, we have curated a dedicated online tutorial for 
OrganAxis (https://organ-axis-tutorial.readthedocs.io).
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Extended Data Fig. 1 | Composition of fetal and paediatric scRNA-seq data. 
a. Sample enrichment strategy for dissociated datasets as indicated by colour. 
Each dot represents a sample and stacked dots within a technology panel 
represent samples from the same donor. For samples marked by a black circle, 
αβTCR-seq was carried out. See Fig. 1c for sample source. b. Relative cell 
contribution to the dissociated dataset per donor, split by age group. Sample 
origin is indicated for all donors. n = 12 fetal donors, n = 17 paediatric donors. 
HTSA: Human Thymus Spatial Atlas. c. Relative contribution of published  
and newly generated scRNA-seq datasets by broad cell type (cell type level 1).  
n = 29 donors. d. UMAP embedding of the full, integrated scRNA-seq dataset with 

annotations of the major cell lineages (cell type level 0). e. UMAP embedding of 
the full, integrated scRNA-seq dataset with more detailed lineage annotations 
(cell type level 1). See Supplementary Notes 3 and 4 for complete annotation  
of T lineage, hematopoietic and stromal cells. “See_lv4_explore” refers to  
cells which could not confidently be assigned to a unique cell type based on 
literature or cell markers but can be explored in the provided AnnData object 
(Data availability). DC, dendritic cell; EC, endothelial cell; Fb, fibroblast; Mast, 
mast cell; Mono, monocyte; Neut, neutrophil; RBC, red blood cell; DN, double 
negative thymocyte; DP, double positive thymocyte; NK, natural killer cell.
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Extended Data Fig. 2 | Annotation of secondary structures in the thymus 
and distance measurements to region boundaries. a. Representative H&E 
sections (left) of fetal (p.c.w. 15) and paediatric (3 months) Visium data, and 
IBEX virtual H&E (7 days old). Corresponding discrete annotation (annotation 
level 1, right) curated with TissueTag for Hassall’s corpuscles (HC), perivascular 
space (PVS), and additional small vessels. b. UMAP embedding of integrated 

samples for the three spatial datasets coloured by annotation level 1. c. UMAP 
embedding of integrated samples for the three spatial datasets coloured by 
min. L2 distances of each spot/cell to the cortex (right) and to the capsule/
septum (“Edge”, left) demonstrating distinct spatial variance. d. CMA 
projected to Visium spot data and IBEX single cells on the same sections as 
shown in a.



Extended Data Fig. 3 | Spatial sample composition and variance. a-b. UMAP 
embeddings of integrated Visium spots coloured by donor, sample (Visium 
capture region), Visium slide, SpaceRanger version, age, number of genes 
captured, and section thickness. a. Integrated UMAP embeddings for fetal 
Visium samples. Age is indicated as post-conception weeks (p.c.w.) − 40.  

b. Integrated UMAP embeddings for paediatric Visium samples. c. UMAP 
embedding of integrated IBEX single nuclei data coloured by sample (one sample 
per donor). d. Cumulative explained variance of the ten first PCA components 
correlated to the spot CMA level for fetal and paediatric Visium, and paediatric 
IBEX samples. Samples are sorted by age from left to right and coloured by donor.
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Extended Data Fig. 4 | T cell markers and cytokine/chemokine expression 
profiles in fetal and paediatric single-cell and spatial datasets. a. Dotplot 
showing expression of key cell type markers in the αβ T lineage differentiation 
stages depicted in Fig. 3d. Cells are arranged from most immature (left) to mature 
(right). Bar graphs indicate the total number of cells per subset. b. Boxplots 
showing the mean expression of selected chemokine genes in each CMA bin 
across different fetal vs. paediatric samples. Box boundary extends from  
the first to the third quartile of distribution with median in between, whiskers 

indicate min and max ranges with the exception of outliers (outside an 
inter-quartile range(IQR) of 1.5, indicated by diamonds). Cosine similarity 
between the mean fetal and paediatric expression values is indicated.  
n = 16 paediatric Visium samples, n = 12 fetal Visium samples c. Dotplot for 
chemokines/cytokines with differential distribution across the CMA bins for 
fetal vs. paediatric tissue as indicated either by low cosine similarity and/or  
a significant interaction effect. Bars show total number of cells per subset.



Extended Data Fig. 5 | Identification of stromal and TEC subtypes using 
IBEX imaging. a. IBEX confocal images from 2 month-old female thymus 
(IBEX_08) showing anatomical structures and cell types defined by 44-plex 
antibody panel. Images are representative of 8 samples/donors. Not shown: 
CD15 and LYVE-1. Large overview image shows a typical region of interest 
captured in each IBEX experiment (2-3 lobules). ANXA I, Annexin I; CHGA, 
Chromogranin A; Pan-CK, Pan-Cytokeratin; KRT, Keratin. b. Dot plot showing 
expression of proteins in IBEX data and of corresponding genes in scRNA-seq 

data for annotated TEC subsets. Depicted cell types represent cells in 
paediatric scRNA-seq data (“_gex”) and the corresponding cell types predicted 
in IBEX data based on KNN matching (“_ibex”). Expression was normalized per 
row. Boxes highlight corresponding cell types in the two datasets. KKNf is the 
fraction of mapped target KNN cells that come from the same cell type. c. Same 
as in b. but with rows clustered by mutual similarity dendrogram linkage to 
show similarity level between cell types within and across datasets. Boxes 
highlight cell types with highest similarity according to dendrogram.
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Extended Data Fig. 6 | Distribution of TEC subtypes in the fetal and 
paediatric thymus. a. Dot plots showing the relative cell abundance of 
specialized TECs across the CMA bins in fetal and paediatric deconvolved 
Visium datasets. In all Visium dot plots, cutoff indicates the minimum proportion 
of the respective cell type in a Visium spot for the spot to be included. b. Dotplots 
showing relative cell abundance of specialized TECs across the CMA bins in 
paediatric IBEX KNN-mapped single nuclei datasets. For IBEX datasets KNN 
cutoff indicates the minimum percentage of KNNs that corresponded to the 
eventually assigned majority cell type agreement (see Methods). c. Relative cell 
distribution of TECs in CMA bins and spots associated with perivascular space 
(PVS) based on deconvolved Visium data. Boxes highlight mcTECs and PVS 
annotations. Note that proliferating mcTECs were only found in fetal thymus and 
cTECIII was exclusively detected in paediatric data. d. Relative cell distribution of 
TECs in CMA bins as well as PVS region based on paediatric IBEX KNN-mapped 
single nuclei datasets. Boxes highlight mcTECs and PVS annotations. e. 4-plex 

RNAscope staining of a fetal thymus tissue section (p.c.w. 13) for mcTECs 
(DLK2, IGFBP6), cTECs (LY75) and mTECs (EPCAM). DAPI was used to identify 
nuclei. White frame in the left image indicates magnified regions shown on  
the right. Lines in the left image indicate the CMJ, dashed lines in the right 
images highlight the capsule. Arrows indicate capsular mcTECs. Images are 
representative of four independent replicates. f-g. RareCyte protein staining 
of fetal and paediatric thymus sections with Ki-67, Pan-Cytokeratin (PanCK), 
and CD45 antibodies and DAPI. White frame in the left image indicates magnified 
regions on the right. f. Fetal thymus sample (p.c.w. 12). Arrows highlight a 
subcapsular niche with Ki-67+ non-lymphoid (CD45−) epithelial (PanCK+) cells. 
Images are representative of a total of 10 replicates from 6 donors. g. Paediatric 
thymus sample (1 month old). Arrows highlight epithelial (PanCK+) cells in a 
lymphocyte-free (CD45−) region in the PVS, which show little proliferation  
(Ki-67+/−). Images are representative of a total of 3 replicates from 3 donors.



Extended Data Fig. 7 | Expression of mucosa- and skin-related genes in 
differentiated mTECIII subtypes. a. Histogram showing the number of 
Visium spots with medullary annotation by their distance to the nearest HCs. 
The red dashed line indicates the maximum distance cutoff for Visium spots to 
be included. Note that around 90% of medullary Visium spots fall within this 
window. b. Multiscale diffusion space embedding of the mTECII/mTECIII 
populations generated using Palantir (coloured according to cell populations) 

with trajectory generated using scFates overlaid on top (colour indicates 
pseudotime stretching from dark violet to yellow). c. Heatmap showcasing 
differentially expressed genes between three different branches of the  
mTECII/TECIII trajectory, namely mTECII, mTECIII-skin and mTECIII-muc.  
See Methods for details on derivation of DE genes and source data for p-values. 
Specialization genes (SGs) are labelled.
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Extended Data Fig. 8 | Annotation and expression profiling of developing 
human thymocytes using CITE-seq. a. UMAP embedding of the full paediatric 
CITE-seq dataset with high-resolution annotation of T cell maturation stages as 
well as several non-T cell subtypes. Supplementary Note 6 provides additional 
details on CITE-seq-derived annotation of T lineage cells. DP, double positive; 
(P), proliferating; (Q), quiescent; rearr, TCR-rearranging; pos sel, positive 
selected; SP, single positive; recirc, recirculating; tr, tissue resident; circ, 
circulating; itg, integrin. b. Surface expression levels of lineage and maturation 
markers along predicted pseudotimes for CD4 (left) and CD8 lineage (right). 

Line plots represent smoothed means ± s.e.m. of the expression levels in cells 
shown in Fig. 6c. Shaded boxes indicate the migration window and CD8SP 
cortical stage identified in Fig. 6d–f. c. Dot plot depicting expression of 
relevant chemokines in hematopoietic and stromal cells according to the 
paediatric scRNA-seq dataset. Colour coding indicates corresponding ligands 
to the receptors shown in Fig. 6g. Bar graphs indicate total number of cells per 
cell type. medFB, medullary fibroblast; EC, endothelial cell; Art, arterial; Ven, 
venous; Cap, capillary; Mac, macrophage; DC, dendritic cell.
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