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Assessment of single-cell gene expression (single-cell RNA sequencing)

and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been
invaluable in studying lymphocyte biology. Here we introduce Dandelion,
acomputational pipeline for scVDJ-seq analysis. It enables the application
of standard V(D)) analysis workflows to single-cell datasets, delivering
improved V(D)) contig annotation and the identification of nonproductive
and partially spliced contigs. We devised a strategy to create an AIR feature
space that can be used for both differential V(D)) usage analysis and
pseudotime trajectory inference. The application of Dandelionimproved
the alignment of human thymic development trajectories of double-positive
T cells to mature single-positive CD4/CDS8T cells, generating predictions

of factors regulating lineage commitment. Dandelion analysis of other cell
compartments provided insights into the origins of human Bl cells and
ILC/NK cell development, illustrating the power of our approach. Dandelion
isavailable at https://www.github.com/zktuong/dandelion.

Single-cellgenomics has advanced our understanding of humanimmu-
nology'?. Paired adaptive immune receptor (AIR) sequencing with
mRNA expressioninthe same cell allows for direct linkage of AIR reper-
toire with cellular phenotypes, whichis a powerful way to understand
lymphocyte development and function®°.

Multi-omics analysis has enabled the study of cellular biology
across datamodalities at an unprecedented resolution. Thisincludes
theintegration of paired single-cell RNA sequencing (scRNA-seq) and
assay for transposase-accessible chromatin with high-throughput

sequencing data or cellular indexing of transcriptomes and epitopes
by sequencing data™®. However, unlike these modalities, which largely
consist of continuous data, AIR data consist of amixture of categorical
and continuous data, posing additional challenges for integration. This
includes annotations of variable (V), diversity (D) and joining (J) genes,
whichare recombined and selected during B/T cell development’. The
Adaptive Immune Receptor Repertoire (AIRR) community was formed
in2015to help address challenges related to AIR data analysis'® ">, This
hasledtothe standardization of repertoire data representation across
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AlRanalysis domains. There are established packages that can deal with
single-cell AIR repertoire data and they provide a variety of methods
for downstream analyses (nonexhaustive list of popular toolsis shown
in Extended Data Fig. 1). The functions include re-annotation of AIR
genes, quality control checks, matching contigs to cells, clonotype
definition, mutation quantification, diversity estimation and many
more (Extended DataFig.1). Single-cell AIR software are often designed
to interact with a companion single-cell gene expression software,
for example, scirpy" with scanpy'* and scRepertoire” with Seurat®,
providing valuable analysis and visualization options. There are also
tools for predicting antigen specificity of T cell receptors (TCRs; for
example, TcellMatch?), annotating TCRs with epitopes (for example,
Platypus™ and Immunarch®) and extraction of significant motifs and
motif groups (for example, ALICE®). Tools for joint embedding of
single-cell gene expression and AIR complementarity-determining
region 3 (CDR3) sequences have also been developed (for example,
CoNGA? and mvTCR??). There remain opportunities for new methods
torealize the full potential of paired scRNA-seq and scVDJ-seq data.

To that end, we developed Dandelion, a holistic analysis frame-
work for understanding single-cell lymphocyte biology. It offers a B
cell receptor (BCR) and TCR contig annotation pipeline, integrative
analysis with single-cellRNA-seq dataand a V(D)J feature space for dif-
ferential V(D)) usage and pseudotime trajectory inference. Here using
two immune development datasets, we showcase how Dandelion can
improve the alignment of cells along T cell development trajectory
and provide insights into human B1 cell origin and innate lymphoid
cell (ILC) and natural killer (NK) cell development.

Results
Dandelion enables holistic scVDJ-seq analysis
AsDandelion operates on the AIRR data format, it is highly interoper-
able with existing AIRR tools'>?, It can serve as a bridge between the
various tools for AIRR analysis and the single-cell software ecosystem,
for example, scverse'** (Fig. 1a). Dandelion has been certified by the
AIRR Software Working Group to be AIRR standards compliant.
Dandelion can be used to analyze single-cell BCR, aTCR and
yY6TCR data, allowing for mutation calling,improved y6TCR annotation,
analysis of productive and nonproductive V(D)) contigs and identifi-
cation of unspliced / gene alignments (Fig. 1b). Dandelion performs
quality control checks, clonotype calling and network generation for
downstream analyses. It is designed to work with AIRR-formatted input
or 10X Genomics’ cellranger vdj output. Amain feature of Dandelionis
the creation of a ‘V(D)] feature space’ that can be used to perform and
visualize differential TCR/BCR usage across cell pseudo-bulks or neigh-
borhoods and infer pseudotime trajectory inference. Extended Data
Fig.1shows a summary of features in Dandelion and other pipelines.
Dandelion was previously applied to a large COVID-19 study*, which
showcased its network-based repertoire diversity analysis method.

Dandelion provides a streamlined preprocessing pipeline

For optional re-annotation of contigs, Dandelion expects 10X Genom-
ics’ cellranger vdj output files (for example, all_contig_annotations.
csvand all_contig.fasta).

Similar to Change-O*, Dandelion re-annotates V(D)] contigs using
igblastn® with reference sequences contained in the international
ImMunoGeneTics information system (IMGT) database?. blastnis also
used to check the Dand/genes separately (same settings asigblastn®.
The additional blastn step allows us to (1) apply an e-value cutoff for
D/J calls to only retain high confidence calls; (2) identify ‘multi-) map-
ping’ contigs (see below) and (3) recover contigs without Vgene calls
(removed by igblastn). We packaged this preprocessing workflow into
asingularity container to streamline and improve the user experience
and avoid the difficulties with setting up the pipeline.

Nonproductive contigs do not translate into functional proteins
and are often filtered out by other scVDJ-seq analysis pipelines, for

example, scirpy”, scRepertoire” and Platypus'® (Extended Data Fig. 1).
In the Immcantation® workflow, nonproductive contigs are preserved
andthereare specificinstructionsfor filtering or retention during anno-
tation and clone definition steps. Moreover, igblastnis a Vgene anno-
tation tool® and would filter contigs without V gene. We found that a
significant proportion of xBTCR, ySTCRand BCR datawere nonproduc-
tivein fetal human tissues® and the majority were due to absent Vgenes,
withthe exception ofthe TRA locus where most were due to presence of
premature stop codons (Fig. 2a). This pattern was consistent even after
excluding thymicsamplestoaccount for developing T cells (Extended
DataFig.2a). These nonproductive contigs without Vgenes were cap-
tured in scVDJ-seq because the rapid amplification of 5’ complemen-
tary DNA (cDNA) ends (5’ RACE) technology used in the protocol does
not require primers against V/ genes for targeted enrichment, in con-
trast to the previous multiplex PCR approach (Extended Data Fig. 2b).
They likely represent products of partial or failed recombination and
wereasoned that they are still biologically meaningful, reflectingacell’s
history and origin. The Immcantation workflow would divert these
contigs into a ‘failed’ file and this file is not typically exposed to the user.
Therefore, Dandelion does not automatically filter out nonproductive
contigs, and this data have utility, as later discussed.

We also discovered that multiple / genes can be sequentially
mapped onto different regions in the same mRNA contig, a phenom-
enon we termed ‘multi-) mapping’. We found that the majority of the
most frequent multi-) mapping contigs contained two to four neighbor-
ing/genesinterspersed with introns (Supplementary Table1). AsRNA
splicing, rather than DNA recombination, is the process of linking the
chosen/to Cgenes, contigs with multi-) mappingare likely products of
partially spliced transcripts (Fig. 2c). It is biologically plausible that the
Jgenenearest tothe 5’ endis theintended exon that would be expressed
inthe mature mRNA.

We next investigated factors that might contribute to multi-) map-
ping. We first noted that nonproductive contigs without Vgenes were
more likely to have multi-) mapping (Fig. 2c). This difference could be
duetononsense-mediated decay (NMD), an RNA degradation process
that is triggered due to premature stop codons”. Multi-) mapping
contigs containing a V gene will initiate translation from the Vgene,
triggering degradation by NMD due to premature stop codonsin/gene
introns, whereas those without a Vgene cannot be translated and will
therefore evade degradation by NMD. To test the contribution of NMD
to multi-) mapping, we analyzed peripheral blood mononuclear cells
(PBMCs) treated with cycloheximide against control cells. Treatment
resulted in an increase in the proportion of multi-) mapping in TCR
contigs with V genes (Extended Data Fig. 2c), supporting that NMD
recognizes and degrades V-gene-containing multi-) mapping contigs.

Using a logistic regression model, we found that there was a sig-
nificantinteraction (Benjamini-Hochberg (BH) adjusted P=7.07 x10™*)
between Vgene presence and cycloheximide treatment on multi-) map-
ping (Fig. 2d; ref. 3; Supplementary Table 2, cycloheximide treatment,
and Supplementary Table 3), supporting the above findings. However,
thesignificant noninteracting Vgene term (BHadjusted P=5.73 x 1072
suggests that NMD may only partially account for the effect of Vgenes
on multi-) mapping. Furthermore, we found that the known consensus
motif for splicing, ‘GTAAGT’ in +1 to +6 position of adjacent intron?,
was disrupted in/genes associated with more multi-) mapping (Fig. 2e
and Supplementary Table 4). In conclusion, specific cell types, /gene
identity, Vgene presence and NMD are factors that may contribute to
multi-) mapping (Extended Data Fig. 2d).

Dandelion also performs y6TCR contig annotation. There are two
existing methods for sc-ydTCR mapping as follows: (1) 10X Genomics’
cellranger vdj, (primarily tailored for aTCR contigs); (2) TRUST4
(ref. 29), which performs de novo contig assembly and annotation.
The cellranger software can reconstruct y§TCR contigs but most ver-
sions struggle with annotating them (Supplementary Note). While
TRUST4 can yield sc-TCR annotations, including y8TCR, it relies on
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Fig.1|Holistic scVDJ-seq analysis pipeline. a, Schematicillustration showing Dandelion provides refined contig annotations with BCR mutation calling,
that Dandelion bridges methods from single-cell V(D)) workflows, such as AIRR improved ySTCR mapping and identification of multi-) mapping contigs. It
standards and the single-cell gene expression analysis software, and combines also provides downstream analysis after integration with sScRNA-seq results.
with them additional new methods of its own to create a holistic pipeline for Apart from allowing the users to explore clonotype networks and V(D)) usage,
analysis. b, Schematic illustration of the Dandelion workflow. Paired single-cell Dandelion also supports building a V(D)) feature space on pseudobulked
gene expression (scRNA-seq) and AIR repertoire (scVDJ-seq) data are generated, cells, that can be used for differential V(D)) usage and pseudotime inference.
followed by mapping of the sequencing reads. From the mapped results, Additional unique features provided by Dandelion are boxed in orange.
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logistic regression results (ref. 3); y axis: -log,,(BH adjusted Pvalue); x axis: contigs. Right—high confidence productive contigs. Data for a, ¢, d (bottom) and

log(odds ratio). Variables that were also significant in our control/cycloheximide- ~ fwere taken fromref.3 and each dot represents asample.
treated PBMC dataset are highlighted in red (associated with increased multi-J
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the presence of a V gene in the contig thus unable to handle nonpro-
ductive contigs without V' genes. For comparisons, we processed 33
YSTCR libraries®; one mapping was done with cellranger 6.1.2 to the
10X GRCh385.0.0V(D)J reference, with the contigs identified by cell-
ranger as high confidence subsequently re-annotated with Dandelion.
Another mapping was done with cellranger 6.1.2to the 5.0.0 reference
modified to obtain annotated ySTCR contigs as per 10X Genomics’
workaround instructions. We see a consistently higher recovery rate of
both high confidence y§TCR contigs and high confidence productive
YSTCR contigs in the mapping postprocessed with Dandelion (high
confidence contigs: P=5.39 x 107, high confidence productive contigs:
P=3.14 x10°%, Wilcoxon signed-rank test; rank correlations were 1 and
0.98, respectively; Fig. 2f). While 10X Genomics has introduced some
YSTCR support with cellranger 7.0.0, the results were inferior to the
prior workaround from version 6 (Extended Data Fig. 2e).

Creating a V(D)J feature space

Tobetterleverage the combined gene expressionand AIR repertoire data,
weintroduced ananalysis strategy to create a pseudobulked V(D)) feature
space, transforming V(D)J datafrom categorical to continuous format for
downstream applications (Fig. 3a). Transcriptionally similar cells are first
grouped into pseudo-bulks, which can be based on metadata features,
or partially overlapping cell neighborhoods®. For instance, cells can
be pseudobulked by cell type, donor and organ to perform differential
analysis across cell types while controlling for donor and organ differ-
ences. For trajectory analysis, we recommend pseudo-bulking cells by
partially overlapping cell neighborhoods sampled from gene expression
space for example using Milo** to model a more continuous cell state.
For each pseudobulk, we compute the fraction of cells using each of the
genesinasegment (for example, TRAJ1to TRAJ61in the TRAJ segment).
The fractions fromthe various segments are concatenated, forming the
V(D)) matrix/space. This canthen be used with conventional dimension
reduction techniques such as principal component analysis (PCA) or
uniform manifold approximation and projection (UMAP).

One utility of this V(D)) space is demonstrated as we pseudobulked
adult human T cells’ by cell types and donors to explore differential
usage that is consistent across different donors. On the V(D)) feature
space-based UMAP, pseudobulks containing mucosal-associated
invariant T (MAIT) cells formed a distinct cluster, in contrast to the
single-cell gene expression-based UMAP (Fig. 3b and Extended Data
Fig.3a,b). This is expected due to the semi-invariant nature of MAIT
TCRs and illustrates the power of the V(D)) feature space. Although
there is no clear clustering in other cell types apart from MAIT
(Extended Data Fig. 3b), CD4" T cells were distinctly separated from
CD8'T cells (Fig. 3b). Differential V(D)) usage for each cell type can be
computed, for example, with nonparametric statistical tests imple-
mented within scanpy™ (Fig. 3b and Supplementary Table 5).

Leveraging V(D)) usage in pseudotime trajectory inference

We also developed a new usage for V(D)) data by performing pseudo-
time inference on the cell neighborhood-based V(D)) feature space.
Many pseudotime inference methods have been proposed based
on transcriptome similarity®. However, current approaches remain
problematicinimmune cell development because the differentiation
processisofteninterspersed with waves of proliferation, and transcrip-
tomic convergence, for example, between NKT and NK cells can be mis-
leading. Because the usage of V(D)/genes in AIRs changes definitively
asaresultof cycles of recombination and selection during lymphocyte
development, the AIR repertoire acts as a natural ‘time-keeper’ for
developing Tand B cells. A developing T cell’s fate toward CD8 versus
CD4 T cells is determined by whether its TCR interacts with antigen
presented on MHC class I or class Il during positive selection. There-
fore, itis biologically conceivable that the TCR gives more accurate
predictions on the branch probability of each T cell lineage. For this
task, we chose to pseudobulk by cell neighborhoods as modeling cell

states with partially overlapping cell neighborhoods has advantages
over clustering into discrete groups.

We sampled cell neighborhoods from developing T cells with
productive afTCR (double positive (DP) to mature single positive
CD4*/CDS8" T cells)® on a k-nearest neighbor graph built with gene
expression data using Milo*® and constructed the neighborhood V(D)
Jfeature space (Fig. 3c and Extended Data Fig. 3c). Trajectory analysis
on this V(D)) feature space was performed using Palantir®. It outputs
pseudotime and branch probabilities (Fig. 3c) to each terminal state
(Extended Data Fig. 3d). The inferred pseudotime follows from pro-
liferating to quiescent DP ((DP(P)) and DP(Q)) T cells, to abT(entry),
which splits into CD8" T and CD4" T lineages. TCR usage trend can be
visualized along the pseudotime trajectory (Extended DataFig.3e). The
average pseudotime and branch probabilities per cell can also thenbe
projected back fromits neighborhoods (Fig. 4a).

There are two alternative tools, CONGA* and mvTCR?, that inte-
grate transcriptome with TCRinformation. Both were created to detect
clonally expanded cell types with CDR3 sequences being the input. We
tested whether they could also be used to reveal developmental rela-
tionships with the same dataset above. Both CONGA and mvTCR failed
to preserve the intercellular relationships (Extended Data Fig. 4a,b).
This is not surprising, as selection of different V(D)/ genes underpins
recombination, while CDR3 diversity can additionally be influenced
by random nucleotide insertions.

V(D)) trajectory accurately orders T cell development

We next compared the results of trajectory inference on feature spaces
from pseudobulked neighborhood V(D)J, pseudobulked neighborhood
gene expression or single-cell gene expression.

The analysis of single-cell gene expression performed unsatis-
factorily as a large proportion of CD8* T and CD4" T cells were mis-
classified with higher branch probabilities to the opposite terminal
state (Extended Data Fig. 5a,b). Therefore, we mainly focused our
comparison with results from pseudobulked neighborhood gene
expression (GEX) space, which produced more biologically meaningful
pseudotime and branch probabilities (Fig. 4a). When projected back
to cells, the inferred pseudotime in the pseudobulked space better
reflected the known biology of DP(P)_T to DP(Q)_T, to abT(entry) and
subsequent splits into CD8* T and CD4" T lineages (Extended Data
Fig.5c,d). This suggests that pseudotime inference with pseudobulked
cellsworks better than directly fromsingle cells, potentially due to less
noise compared to single-cell data.

We observed two major differences when comparing the pseu-
dotime inferred from neighborhood V(D)) feature space versus that
fromneighborhood GEX space (Fig.4a).First, the DP(Q) T cells dwelled
for alonger ‘time’in the V(D)J trajectory compared to the GEX trajec-
tory. Second, the branching point of CD8* T and CD4" T cell lineages
happened earlierinabT(entry) cells in the V(D)) trajectory (Extended
DataFig. 6¢). To assess the fidelity of the V(D)) trajectory, we used the
known fact that V-J recombination in the TRA locus happens proces-
sively® (from middle to distal ends on the genome). We encoded the
genomicorder numerically for each TRAVand TRA/gene and the V(D))
pseudotime ordering for each DP(Q) neighborhood showed a substan-
tially better monotonic relationship with the TRAV relative locations
(Fig. 4b). Average local correlations across adjacent neighborhoods
along V(D)) pseudotime had higher absolute correlation coefficients on
average (-0.67 versus —0.43 for TRAV; Extended Data Fig. 6a). Asmaller
improvement was also observed for TRA/, with the average local Pear-
son’s correlationsimproved from 0.42 to 0.50 (Extended DataFig. 6b).

CD4 versus CD8 T cell lineage commitment is a classical immuno-
logical binary lineage decisionthat hasbeenintensely investigated over
many years* but remains challenging to study as the selection intermedi-
ates have been difficult to observe directly®. We examined which genes
inabT(entry) cells showed expression patterns that are correlated with
branch probabilities to CD8" T versus CD4" T lineage (Fig. 4c).
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Fig. 3| Creating a V(D)] feature space. a, Schematic illustration of the workflow
of creating a V(D)) feature space. Step 1—cells are assigned to pseudobulks, which
canbebased on metadata features, or partially overlapping cell neighborhoods.
Step 2—V(D)) usage frequency per pseudobulk is computed for each gene

and used asinput of the V(D)) feature space. Step 3—the V(D)) feature space

can be visualized with conventional dimension reduction techniques such as
PCA or UMAP, and it can then be used for differential V(D)) usage analysis and
pseudotime inference. b, Top left—gene expression UMAP of all T cells from
adult human tissues inref. 5, colored by low-level cell type annotations. Each
point represents a cell. Top middle—V(D)] usage frequency per celltype_donor
pseudobulk is computed for each gene and used as input of the V(D)) feature
space. Top right—UMAP of the pseudobulk V(D)) feature space of the same cells.

Each point represents a cell pseudobulk. Bottom panel—top two differentially
expressed TCRgenesin CD4' T cells, CD8" T cells and MAIT cells. ¢, Left—UMAP
of neighborhood V(D)J feature space covering DP to mature T cells with paired
productive afTCRin data from ref. 3. Each point represents a cell neighborhood,
colored by the dominant cell type in each neighborhood. The point size
represents neighborhood size, with connecting edges representing overlapping
cellnumbers between any two neighborhoods. Only edges with more than

30 overlapping cells are shown. Right top—inferred pseudotime, and branch
probabilities to CD8' T and to CD4" T, respectively, overlaid onto the same UMAP
embedding on the left. Right bottom—scatterplot of branch probability to CD8*
Tagainst pseudotime. Each point represents a cell neighborhood, colored by the
dominant cell typein each neighborhood.
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The top genes that were positively correlated with the CD8*
T cell lineage choice included CD8A and CD8B, which are markers for
CDS8* T cells®. The top genes that were negatively correlated included
CD40LG, whichisamarker for CD4* T helper cells®, and /TM2A (induced
during positive selection and causes CD8 downregulation®). Other
markers of CD4" T cells such as CD4 (ref. 6), together with highly vali-
dated transcription factors (TFs) that are known to be involved in
CDS8' T or CD4" T lineage decisions®, including RUNX3 (ref. 37,38),
ZBTB7B**°, TOX* and GATA3 (ref. 42,43), all displayed significant cor-
relations in the expected directions. However, when using GEX pseu-
dotime, the correlations were notably reduced and some (for example,
TOX and RUNX3) were no longer statistically significant (Fig. 4c). For
TOX, the direction of the correlation was wrongly inverted (Fig. 4¢).In
addition, the V(D)) pseudotime also revealed new associations for TFs
such as ZNF496, MBNL2 and RORC for CD8" T, and SATB1, STAT5A and
STATIfor CD4' T (Extended Data Fig. 6d and Supplementary Table 6).

We have also used different pseudotime inference methods to
ensurethe robustness of the results. Neighborhood V(D)J-based pseu-
dotime trajectories inferred using monocle3 (ref. 44) and diffusion
pseudotime® similarly showed a better monotonic relationship with
TRAV/TRA] relative locations compared to neighborhood GEX-based
pseudotime (Extended Data Fig. 7a,b). Overall, Palantir is preferred
as it outputs the branch probabilities, which is useful in deciphering
CD4/8lineage decisions.

Taken together, we showed that V(D)J-based pseudotime inference
givesmore accurate DP(Q) T cell alignment and improves lineage asso-
ciationwithinabT(entry) cells. We can use this approach to recapitulate
known regulators and uncover new candidate regulators underlying
CD8' T/CD4'T fate choice.

Using nonproductive recombination as a ‘fossil record’

Based on our earlier observations of high proportions of nonproduc-
tive contigs being represented in the single-cell V(D)) data (Fig. 2a),
we next explored whether this was cell-type specific. As expected,
nonproductive BCR contigs were restricted to B lineage cells (Extended
DataFig. 8a,b). However, nonproductive TRB contigs were surprisingly
expressed in many cell-type lineages (developing DN T cells, ILC/NK,
B cells; Fig. 5a and Extended Data Fig. 8c). The majority of the nonpro-
ductive TRB contigs within ILC/NK/B cells were contigs without Vgene
(Extended Data Fig. 8d).

The B lineage cells with nonproductive TRB contigs included
pre-proBandB1cells but not pro-or pre-B cells (Fig. 5aand Extended
Data Fig. 8c). Pre-pro B and B1 cells expressed only nonproductive
TRBbutnot TRG/D contigs (Extended Data Fig. 9a-c), suggesting that
they share a common developmental route (Fig. 5b), bypassing pro-/
pre-B cell stages. This clarifies that human fetal B1 cells can emerge
through an alternative route. The conventional route is thought to
progress from pre-pro, pro-, pre-,immature, to mature naive B cells*.
Our observations are consistent with findings in mouse B1s, which
were shown to bypass the pre-BCR selection stage*”**, which normally
happens in pre-B cells to remove self-reactive B cells. This may also
explain why B1 cells have BCRs with shorter noncoded/palindromic

(N/P) nucleotide insertions?, due to negligible expression of DNTT
in pre-pro B but much higher expression in pro- and late pro-B cells’.
In addition, as pre-pro B cells are almost undetectable in adult bone
marrow®, it potentially explains the difficulty of identifying Bl-like
cellsin adult human tissues®.

Similar to DN T cells, the ILC/NK lineage also expressed nonproduc-
tive TRG/D contigs with some TRA contigs (Extended Data Fig. 9a-c).
We used TRBJ frequency to construct a V(D)J feature space because all
T/ILC/NK cells express TRBJ (Fig. 5b and Extended Data Fig. 10a). The
inferred trajectory suggests that ILC/NK cells deviate away from T cell
development between DN(early) and DN(Q) stage (Fig. 5b,c).

Previous literature on the ILC/NK lineage has also demonstrated
partial recombination of TRG/D in mouse lung ILC2 (ref. 50) and of
TRB/G in mouse thymic ILC2 (ref. 51), leading to the hypothesis of
‘aborted’ DNs for ILC/NK development®?. Our observation of the expres-
sion of nonproductive TRB/G/D in ILC/NK cells partially supports this
theory. Notably, we also observed nonproductive TRB expression in
ILC/NK cellsin other fetal organs, with no overt differencesin frequen-
ciesbetween organs (Extended Data Fig. 9d). This potentially suggests
that T cells and ILC/NK cells might share the sameinitial stage of devel-
opment, and then deviate away from each other before productive
TRB/TRG/TRD is made.

We observed that expression levels of genes encoding TFs (Fig. 5¢)
and cell surface proteins (Extended Data Fig. 10b) such as SP/1, RAGI,
HHEX, TCF12, CD34, CD3D, CD8A and CD8B, followed an expected
pattern along the TRBJ-inferred trajectory®’. At the same time, we
also discovered many new genes that could redefine DN stages at a
higher resolution than previously reported in the literature. We note
that there were some discordancesin expression patterns of selected
TFs between human and mouse DN development®® (Extended Data
Fig.10c). However, this discrepancy could be due to age mismatch that
is fetalhuman to adult mouse, and the mouse data was mainly learned
from TF-knockout studies. Future work with detailed comparison using
paired scRNA-seq and scVDJ-seq in mice and humans of different age
groups will help provide clarity to this.

Finally, we repeated the analysis in human fetal myeloid cells®
to ask whether the pDCs that have initiated BCR rearrangements are
derived from lymphoid progenitors®*, pDC canbe derived fromboth
myeloid and lymphoid lineages®*** and there is IgH D-J rearrangement
insome pDCs****"°, We found some nonproductive BCR in pDC (both
heavy and light chain as shown in Supplementary Fig. 1a,b) in agree-
ment with previously reported IgH D-J rearrangement in pDC>**¢~>°,
However, pDC itself expresses RAG and DNTT (Supplementary
Fig. 1c). The presence of nonproductive BCR does not necessarily
indicate that pDCs are derived from lymphoid progenitors as BCR
rearrangement can be carried by RAG in pDC itself”. While it may be
interesting to use our VDJ-based trajectory to explore whether the
development of pDC overlaps with early B cell development, the cur-
rent dataset is limited by the cell number as only 51 pDC and cycling
pDC cells have nonproductive IGH.

In summary, the unexpected finding of expression of nonpro-
ductive TCR contigs in specific cell types has the potential to shed

Fig. 4| Comparing pseudotime inferred from V(D)] space or gene expression
(GEX) space. a, Top—pseudotime and branch probability to CD8" T inferred from
neighborhood V(D)) space in Fig. 3¢, projected back to the cells, overlaid onto
the same UMAP embedding as in the top left panel. Left bottom—UMAP of DP
tomature T cells with paired productive aBTCR in data from ref. 3. Each point
represents a cell, colored by cell types. Underneath the UMAP is a schematic
showing the T cell differentiation process. Right bottom—pseudotime and
branch probability to CD8* T inferred from neighborhood GEX space, projected
back to the cells, overlaid onto the same UMAP embedding as in the top left panel.
b, Scatterplots of the pseudotime ordering against the average relative TRAV

or TRAJ location. Each point represents a cell neighborhood. Each TRAV or TRA/
gene is encoded numerically for its relative genomic order. The x axis represents

the average TRAV/TRAJ relative location for each cell neighborhood. Top—results
from pseudotime inferred from neighborhood V(D)) space. Bottom—results
from pseudotime inferred from neighborhood GEX space. ¢, Stripplot of
correlation coefficients of gene expression with branch probabilities to CD8*
Twithin abT(entry) cells, for branch probabilities inferred from neighborhood
V(D)) space and neighborhood GEX space separately. Only genes that are known
CD4'/CD8" T cell markers or TFs involved in CD8* T/CD4" T lineage decisions are
labeled and colored. The rest of the genes are grayed out. Labeled genes that
had significant (BH adjusted P < 0.05) positive correlations were colored inred,
the ones with significant negative correlations were colored in blue and those
without significant correlations were colored in orange.
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Fig. 5| Insights into lymphocyte development from nonproductive TCR.

a, Boxplot of the proportion of cells with productive (blue) or nonproductive
(orange) TRB in different fetal ymphocyte subsets. Each point represents a
sample and data were taken from ref. 3. Only samples with at least 20 cells are
shown. Boxes capture the first to third quartiles and whisks span a further 1.5x
interquartile range on each side of the box. The annotations used here were
based on the version whereby the exact identity of cycling B cells was predicted
tobeimmature B, mature B, Bl or plasma B cells using Celltypist>’. The equivalent
boxplot using the original annotations is shown in Extended Data Fig. 8a. b, Top
left—schematicillustration showing the proposed development of B cells (top
panel), and the relationship between ILC/NK and T cell lineages. Top right—UMAP
of neighborhood V(D)) feature space covering ILC, NK and developing T cells
with TRBJ in data from ref. 3. Each point represents a cell neighborhood, colored

by cell types. The point size represents neighborhood size, with connecting
edges representing overlapping cell numbers between any two neighborhoods.
Only edges with more than 30 overlapping cells are shown. Bottom—inferred
pseudotime and branch probabilities to ILC/NK and T lineage, respectively,
overlaid onto the same UMAP embedding on the top right. ¢, Top—scatterplot of
branch probability to ILC/NK lineage against pseudotime. The pseudotime was
inferred from neighborhood V(D)) space shown in Fig. 5b and projected back
cells. Each point represents a cell, colored by cell types. Bottom—heatmap of
TF expressions across pseudotime in DN T cells. Pseudotime is equally divided
into 100 bins, and the average gene expression is calculated for DN T cells with
pseudotime that falls within each bin. Genes selected here are TFs that had
significantly high Chatterjee’s correlation’ with pseudotime (BH adjusted
P<0.05,and correlation coefficient >0.1).

new light on lymphocyte development. Our analysis suggests that B1
potentially arises directly from pre-pro B cells and provides support
for the “aborted’ DN theory for ILC/NK cell origins.

Discussion

Overall, Dandelionimproves upon existing methods with more refined
contig annotations, recognizing nonproductive contigs, identifying
multi-) mapping and recovering more ySTCR contigs. Pseudotime
inference on V(D)J feature space better aligned CD4/CD8T cell lineage
trajectories and suggested developmental origins of ILCs.

Ourimproved workflow revealed two unexpected data challenges
and opportunities with scVDJ-seq. First, the high proportion of nonpro-
ductive TCR/BCR contigs suggests that these are unique challenges
duetothechoice of single-celllibrary construction. However, itis not
unexpected as V(D)] rearrangement is a ‘wasteful’ exercise, a price to
generate effective and diverse immune responses, for example, two
of three rearrangement events for immunoglobulins are destined
to be nonproductive®®®’, While nonproductive and productive TCR/
BCRs from high-throughput ‘bulk’ AIR sequencing data have been
previously used together to estimate the generation probabilities and
diversities of AIRs during affinity maturation and infection®>®*, these
would only haveincluded contigs with Vgene dueto library limitations
asdiscussed.

Second, detection of multi-) mapping suggests that these are
naturally occurring and likely represent products of partial splicing
events. While afew factors were identified to be associated with multi-J
mapping, the biological implications are unclear at this stage, warrant-
ing future explorations.

Weintroduced anew way of analyzing the single-cell V(D)) modal-
ityinDandelion with the pseudobulk V(D)) feature space, which canbe
used for visualization and differential V(D)) usage testing. When pseu-
dobulked on cellneighborhoods, the V(D)) feature space isanchored to
theunderlying neighborhood gene expression space and can be used
for pseudotime trajectory inference.

The first case study examined thymic T cell development. Previ-
ously, abT(entry) cells were suggested to be adivergent point asit was
between DP T cells and mature single positive T cells®. With the V(D))
trajectory, we are now able to better delineate the branching point to
amuch earlier point within the abT(entry) cells. The new trajectories
better aligned CD4/CD8 T cell fate with gene expression patterns of
known marker genes and TFs and additionally revealed new associa-
tions with other TFs that remain to be explored.

This method can be useful for other applications for example
studying T cell developmental stages across the lifespan, diseases and
invitro settings. It remains to be seen whether a VDJ-based trajectory
canbeusedinT cellactivation. This approach has not been optimized
for BCR trajectories, as we are limited by the small number of B progeni-
tors in available data. Further, BCRs have additional rearrangement
rules thatneed to be considered, for example, somatic hypermutation,
asymmetric usage of kappa/lambda light chains and light chain edit-
ing®*, aswellas recently described light chain coherence in functional

antibodies. We hope to improve on these aspects in a future iteration
of Dandelion when more single-cell V(D)) data become available.

The second case study extended the observations of nonproduc-
tive V(D)J contigs in single-cell data, which has been largely ignored
and/or not easily accessible with other workflows, for example, scirpy”
and immcantation®. Our unexpected finding that Bl cellsand pre-pro
B cellsexpressed relatively higher levels of nonproductive TRB contigs
suggest that Bl lineage commitment diverged earlier than expected,
between the pre-pro B stage and pro-B stage. Two competing models
have been described regarding Bl origin®. The lineage model or layered
immune system hypothesis®® proposed that Bland B2 cells arise from
distinct progenitors that emerge at different times during develop-
ment® 7%, while the selection model hypothesized that they originate
from the same progenitors but after differential signaling depending
onself-reactivity’””2. Our findings here potentially offer a reconciliation
of both models, with fetal-specific pre-pro B cells being B1 progeni-
tors, supporting the layered immune system model, and the skipping
of pre-BCR selection presumably allows the formation of self-reactive
BCR, supporting the selection model.

Enrichment of the nonproductive TRB/TRG/TRD contigs was also
observed in NK/ILC lineages. Partial recombination of TCR has been
reported in mouse ILC***' and our findings support the ‘abandoned’
DN theory*. The hypothesis is that ILC/NK cells are originally on a
canonical T cell development trajectory but subsequently influenced to
abortthis process, resulting in sustained expression of nonproductive
TCR, although we cannot rule out other routes of ILC/NK development.

Insummary, Dandelionis afreely available package forintegrative
analyses of single-cell GEX and V(D)J] data. The V(D)) trajectories are
also publicly available for use as areference to a project or to align new
query data. We hope that the software and resource will be useful in
generating moreinsightsintoimmune cell development and function.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41587-023-01734-7.

References

1. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore
immune cell heterogeneity. Nat. Rev. Immunol. 18, 35-45 (2018).

2. Efremova, M., Vento-Tormo, R., Park, J.-E., Teichmann, S. A. &
James, K. R. Immunology in the era of single-cell technologies.
Annu. Rev. Immunol. 38, 727-757 (2020).

3.  Suo, C. et al. Mapping the developing human immune system
across organs. Science 376, eabo0510 (2022).

4. Stephenson, E. et al. Single-cell multi-omics analysis of the
immune response in COVID-19. Nat. Med. 27, 904-916 (2021).

5. Dominguez Conde, C. et al. Cross-tissue immune cell analysis reveals
tissue-specific features in humans. Science 376, eabl5197 (2022).

Nature Biotechnology | Volume 42| January 2024 | 40-51

49


http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01734-7

Article

https://doi.org/10.1038/s41587-023-01734-7

10.

n

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Park, J.-E. et al. A cell atlas of human thymic development defines
T cell repertoire formation. Science 367, eaay3224 (2020).

Lance, C. et al. Multimodal single cell data integration challenge:
results and lessons learned. Preprint at bioRxiv https://doi.
org/10.1101/2022.04.11.487796 (2022).

Lee, J., Hyeon, D. Y. & Hwang, D. Single-cell multiomics:
technologies and data analysis methods. Exp. Mol. Med. 52,
1428-1442 (2020).

Roth, D. B. V(D)J recombination: mechanism, errors, and fidelity.
Microbiol. Spectr., https://doi.org/10.1128/microbiolspec.mdna3-
0041-2014 (2014).

Vander Heiden, J. A. et al. AIRR community standardized
representations for annotated immune repertoires. Front.
Immunol. 9, 2206 (2018).

Rubelt, F. et al. Adaptive Immune Receptor Repertoire Community
recommendations for sharing immune-repertoire sequencing
data. Nat. Immunol. 18, 1274-1278 (2017).

Breden, F. et al. Reproducibility and reuse of adaptive immune
receptor repertoire data. Front. Immunol. 8, 1418 (2017).

Sturm, G. et al. Scirpy: a Scanpy extension for analyzing
single-cell T-cell receptor-sequencing data. Bioinformatics 36,
4817-4818 (2020).

Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).
Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire:

an R-based toolkit for single-cell immune receptor analysis.
F1000Res. 9, 47 (2020).

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R.
Integrating single-cell transcriptomic data across different
conditions, technologies, and species. Nat. Biotechnol. 36,
4A11-420 (2018).

Fischer, D. S., Wu, Y., Schubert, B. & Theis, F. J. Predicting antigen
specificity of single T cells based on TCR CDR3 regions. Mol. Syst.
Biol. 16, €9416 (2020).

Yermanos, A. et al. Platypus: an open-access software for
integrating lymphocyte single-cell immune repertoires with
transcriptomes. NAR Genom. Bioinform. 3, lgab023 (2021).
Popov, A. immunomind/immunarch: Immunarch 0.7.0. Zenodo.
https://doi.org/10.5281/zenodo.6984421(2022).

Pogorelyy, M. V. et al. Detecting T cell receptors involved in
immune responses from single repertoire snapshots. PLoS Biol.
17, e3000314 (2019).

Schattgen, S. A. et al. Integrating T cell receptor sequences and
transcriptional profiles by clonotype neighbor graph analysis
(CoNGA). Nat. Biotechnol. 40, 54-63 (2022).

Drost, F. et al. Integrating T-cell receptor and transcriptome for
large-scale single-cell immune profiling analysis. Preprint at
bioRxiv https://doi.org/10.1101/2021.06.24.449733 (2021).

Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B
cell immunoglobulin repertoire sequencing data. Bioinformatics
31, 3356-3358 (2015).

Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Alexander

Wolf, F. anndata: annotated data. Preprint at bioRxiv https://doi.
org/10.1101/2021.12.16.473007 (2021).

Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an
immunoglobulin variable domain sequence analysis tool. Nucleic
Acids Res. 41, W34-W40 (2013).

Lefranc, M. P. et al. IMGT, the international ImMunoGeneTics
database. Nucleic Acids Res. 27, 209-212 (1999).

Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon-exon
junction complex provides a binding platform for factors involved
in MRNA export and nonsense-mediated mRNA decay. EMBO J.
20, 4987-4997 (2001).

Irimia, M. et al. Complex selection on 5' splice sites in intron-rich
organisms. Genome Res. 19, 2021-2027 (2009).

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

Song, L. et al. TRUST4: immune repertoire reconstruction from
bulk and single-cell RNA-seq data. Nat. Methods 18, 627-630
(2021).

Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. &
Marioni, J. C. Differential abundance testing on single-cell data
using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245-253
(2022).

Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison
of single-cell trajectory inference methods. Nat. Biotechnol. 37,
547-554 (2019).

Setty, M. et al. Characterization of cell fate probabilities in
single-cell data with Palantir. Nat. Biotechnol. 37, 451-460 (2019).
Carico, Z. M., Roy Choudhury, K., Zhang, B., Zhuang, Y. &

Krangel, M. S. Tcrd rearrangement redirects a processive Tcra
recombination program to expand the Tcra repertoire. Cell Rep.
19, 2157-2173 (2017).

Singer, A., Adoro, S. & Park, J.-H. Lineage fate and intense debate:
myths, models and mechanisms of CD4- versus CD8-lineage
choice. Nat. Rev. Immunol. 8, 788-801(2008).

Karimi, M. M. et al. The order and logic of CD4 versus CD8 lineage
choice and differentiation in mouse thymus. Nat. Commun. 12, 99
(2021).

Kirchner, J. & Bevan, M. J. ITM2A is induced during thymocyte
selection and T cell activation and causes downregulation of CD8
when overexpressed in CD4'CD8" double positive thymocytes.

J. Exp. Med. 190, 217-228 (1999).

Taniuchi, I. et al. Differential requirements for Runx proteins in
CD4 repression and epigenetic silencing during T lymphocyte
development. Cell 111, 621-633 (2002).

Sato, T. et al. Dual functions of Runx proteins for reactivating

CD8 and silencing CD4 at the commitment process into CD8
thymocytes. Immunity 22, 317-328 (2005).

He, X. et al. The zinc finger transcription factor Th-POK regulates
CD4 versus CD8 T-cell lineage commitment. Nature 433,
826-833 (2005).

Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage
differentiation during intrathymic T cell positive selection. Nat.
Immunol. 6, 373-381(2005).

Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires
nuclear factor TOX. J. Exp. Med. 205, 245-256 (2008).
Hernandez-Hoyos, G., Anderson, M. K., Wang, C., Rothenberg, E.
V. & Alberola-lla, J. GATA-3 expression is controlled by TCR signals
and regulates CD4/CD8 differentiation. Immunity 19, 83-94
(2003).

Pai, S.-Y. et al. Critical roles for transcription factor GATA-3 in
thymocyte development. Immunity 19, 863-875 (2003).

Cao, J. et al. The single-cell transcriptional landscape of
mammalian organogenesis. Nature 566, 496-502 (2019).
Haghverdi, L., Blttner, M., Wolf, F. A., Buettner, F. & Theis, F. J.
Diffusion pseudotime robustly reconstructs lineage branching.
Nat. Methods 13, 845-848 (2016).

Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B
cell lymphopoiesis through interplay of IL-7 receptor and pre-B
cell receptor signalling. Nat. Rev. Immunol. 14, 69-80 (2014).
Wong, J. B. et al. B-1a cells acquire their unique characteristics by
bypassing the pre-BCR selection stage. Nat. Commun. 10, 4768
(2019).

Kitamura, D. et al. A critical role of A5 protein in B cell
development. Cell 69, 823-831(1992).

O’Byrne, S. et al. Discovery of a CD10-negative B-progenitor

in human fetal life identifies unique ontogeny-related
developmental programs. Blood 134, 1059-1071 (2019).

Shin, S. B. et al. Abortive yOTCR rearrangements suggest ILC2s
are derived from T-cell precursors. Blood Adv. 4, 5362-5372
(2020).

Nature Biotechnology | Volume 42| January 2024 | 40-51

50


http://www.nature.com/naturebiotechnology
https://doi.org/10.1101/2022.04.11.487796
https://doi.org/10.1101/2022.04.11.487796
https://doi.org/10.1128/microbiolspec.mdna3-0041-2014
https://doi.org/10.1128/microbiolspec.mdna3-0041-2014
https://doi.org/10.5281/zenodo.6984421
https://doi.org/10.1101/2021.06.24.449733
https://doi.org/10.1101/2021.12.16.473007
https://doi.org/10.1101/2021.12.16.473007

Article

https://doi.org/10.1038/s41587-023-01734-7

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Qian, L. et al. Suppression of ILC2 differentiation from committed
T cell precursors by E protein transcription factors. J. Exp. Med.
216, 884-899 (2019).

Shin, S. B. & McNagny, K. M. ILC-You in the thymus: a fresh look
at innate lymphoid cell development. Front. Immunol. 12, 681110
(2021).

Hosokawa, H. & Rothenberg, E. V. How transcription factors drive
choice of the T cell fate. Nat. Rev. Immunol. 21, 162-176 (2021).
Musumeci, A., Lutz, K., Winheim, E. & Krug, A. B. What makes

a pDC: recent advances in understanding plasmacytoid DC
development and heterogeneity. Front. Immunol. 10, 1222 (2019).
Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis.
Nature 574, 365-371(2019).

Corcoran, L. et al. The lymphoid past of mouse plasmacytoid
cells and thymic dendritic cells. J. Immunol. 170, 4926-4932
(2003).

Shigematsu, H. et al. Plasmacytoid dendritic cells activate
lymphoid-specific genetic programs irrespective of their cellular
origin. Immunity 21, 43-53 (2004).

Pelayo, R. et al. Derivation of 2 categories of plasmacytoid dendritic
cells in murine bone marrow. Blood 105, 4407-4415 (2005).
Sathe, P., Vremec, D., Wu, L., Corcoran, L. & Shortman, K.
Convergent differentiation: myeloid and lymphoid pathways to
murine plasmacytoid dendritic cells. Blood 121, 11-19 (2013).
Mak, T. W. & Saunders, M. E. The Inmune Response, 373-401
(Elsevier, 2006).

Charles, A., Janeway, J., Travers, P. & Walport, M. Immunobiology:
The Immune System in Health and Disease (Garland Science,
2001).

Elhanati, Y. et al. Inferring processes underlying B-cell repertoire
diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140243
(2015).

Sethna, Z. et al. Population variability in the generation and
selection of T-cell repertoires. PLoS Comput. Biol. 16, e1008394
(2020).

Okoreeh, M. K. et al. Asymmetrical forward and reverse
developmental trajectories determine molecular programs of B
cell antigen receptor editing. Sci. Immunol. 7, eabm1664 (2022).
Montecino-Rodriguez, E. & Dorshkind, K. B-1B cell development
in the fetus and adult. Immunity 36, 13-21 (2012).

66. Herzenberg, L. A. & Herzenberg, L. A. Toward a layered immune
system. Cell 59, 953-954 (1989).

67. Solvason, N., Lehuen, A. & Kearney, J. F. An embryonic source of
Ly1 but not conventional B cells. Int. Immunol. 3, 543-550 (1991).

68. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K.
Identification of a B-1 B cell-specified progenitor. Nat. Immunol. 7,
293-301(2006).

69. Esplin, B.L., Welner, R. S., Zhang, Q., Borghesi, L. A. & Kincade,
P. W. A differentiation pathway for B1 cells in adult bone marrow.
Proc. Natl Acad. Sci. USA 106, 5773-5778 (2009).

70. Yoshimoto, M. et al. Embryonic day 9 yolk sac and
intra-embryonic hemogenic endothelium independently
generate a B-1 and marginal zone progenitor lacking B-2 potential.
Proc. Natl Acad. Sci. USA 108, 1468-1473 (2011).

71. Kreslavsky, T., Wong, J. B., Fischer, M., Skok, J. A. & Busslinger, M.
Control of B-1a cell development by instructive BCR signaling.
Curr. Opin. Immunol. 51, 24-31(2018).

72. Graf, R. et al. BCR-dependent lineage plasticity in mature B cells.
Science 363, 748-753 (2019).

73. Chatterjee, S. A new coefficient of correlation. J. Am. Stat. Assoc.
116, 2009-2022 (2021).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

Nature Biotechnology | Volume 42| January 2024 | 40-51

51


http://www.nature.com/naturebiotechnology
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s41587-023-01734-7

Methods
Dandelion
Preprocessing. Dandelion canrunthe preprocessing of datausing the
standard outputs from all cellranger vdj versions. In this manuscript,
single-cell V(D)) data from the 5’ Chromium 10X kit were initially pro-
cessed with cellranger vdj pipeline (v6.1.2) with cellranger vdj refer-
ence (v5.0.0). TCRand BCR contigs contained in ‘all_contigs.fasta’and
‘all_contig_annotations.csv’ fromall threelibrary types (¢ BTCR, ySTCR
and BCR) were then re-annotated using an immcantation-inspired”
preprocessing pipeline contained in the Dandelion singularity con-
tainer (v0.3.0).

The preprocessing pipeline includes the following steps:

i.  Adjustcell and contig barcodes by adding user-supplied suf-
fixes and/or prefixes to ensure that there are no overlapping
barcodes between samples.

ii. Optionally subset to contigs deemed high confidence in the
cellranger output; this was done in the analysis performed here.

iii. Re-annotation of contigs with igblastn (v1.19.0) against IMGT
(international ImMunoGeneTics) reference sequences (last
downloaded: 01/08/2021) with the following parameters: mini-
mum D gene nucleotide match =9, Vgene e-value cutoff=107%;
rearrangements missing the CDR3/junction sequences are
enforced to be nonproductive (productive = ‘F’) and incomplete
(complete_vdj=F’).

iv. Re-annotation of D and/genes separately using blastn with
similar parameters as per igblastn® (dust = ‘no’, word size (J =7;
D =9)) but with an additional e-value cutoff (J=10"*in contrast
to igblastn’s default cutoff of 10; D =107%). This is to enable the
annotation of contigs without the V gene present.

v. Identification and recovery of nonoverlapping individual/gene
segments (under associated ‘j_chain_multimapper’ columns).
In the list of all mapped/ genes (all_contig_j_blast.tsv) from
blastn, the /gene with the highest score (j_support) was chosen.
Dandelion then looks for the next/gene with the highest
‘j_support’ value, and with start (j_sequence_start) and end
(j_sequence_end) positions not overlapping with the selected /
gene, and does so iteratively until the list of all mapped/genes
are exhausted. In contigs without V' gene annotations, we then
select the 5’ end leftmost/ gene and update the ‘j_call’ column
inthe final AIRR table. For contigs with Vgene annotations, but
with multiple/gene calls, we use the annotations provided by
igblastn (NCBI IgBLAST Release 1.19.0’s release notes state that
they “*Added logic to handle the case where there is an unrear-
ranged/gene downstream of the VDJ rearrangement.).

For BCRs, there are two additional steps:

i. Additional re-annotation of heavy-chain constant (C) region
calls using blastn (v2.13.0+) against curated sequences from
CH1regions of respective isotype class.

ii. Heavy chain Vgene allele correction using TIgGER (v1.0.0)

(ref. 74). The final outputs are then parsed into AIRR format with
change-o scripts®.

All the outputs from each step are saved in a subfolder, which
the user can elect to retain or remove as per their requirements. Typi-
cally, a user would proceed with the file ending with the suffix ‘_con-
tig_dandelion.tsv’ as this represents the rearrangement sequences
that pass standard quality control checks. In this manuscript, we used
the datafoundinthe ‘all_contig_db-all.tsv’ asitalso contains the multi-)
mapping.

Postprocessing. In addition to the preprocessing steps at the contig
level, postprocessing or integrating cell-level quality control is per-
formed using Dandelion’s ‘check_contig’ function. The function checks
whether a rearrangement is annotated with consistent V, D, Jand C

gene calls and performs special operations when a cell has multiple
contigs. All contigsinacell are sorted according to the unique molecular
identifier (UMI) countin descending order, and productive contigs are
ordered higher than nonproductive contigs. For cells with other than
one pair of productive contigs (one VD) and one VJ), the function will
assessifthe cellis to be flagged with having orphan (no paired VDJ or V)
chain), extra pair(s) orambiguous (biologically irreconcilable, for exam-
ple, both TCRs and BCRs in the same cell) status with some exceptions
asfollows: (1) IgM and IgD are allowed to coexist in the same B cellif no
otherisotypesaredetected; (2) TRD and TRB contigs areallowedinthe
same cell because rearrangement of TRB and TRD loci happens at the
same time during development, and TRD variable region genes exhibit
allelic inclusion”. The function also asserts a library type restriction
with the rationale that the choice of the library type should mean that
the primers used would most likely amplify only relevant sequencestoa
particularlocus. Therefore, if there are any annotations to unexpected
loci, these contigs likely represent artifacts and will be filtered away. A
more stringent version of ‘check_contigs’isimplementedin aseparate
function, ‘filter_contigs’, which only considers productive VD] contigs,
asserts a single cell should only have one VD) and one V) pair, or only
an orphan VDJ chain, and explicitly removes contigs that fail these
checks (with the same exceptions for IgM/IgD and TRB/TRD as per
above).If asingle-cellgene expression object (AnnData) is provided to
the functions, it will also remove contigs that do not match to any cell
barcodes in the gene expression data. Lastly, Dandelion can accept
any AIRR-formatted data format, for example, BDRhapsody VD) data.

Clonotype definition and diversity. Dandelion’s mode of clonotype
definition and network-based diversity analysis has been previously
described*. Briefly, TCRs and BCRs are grouped into clones/clono-
types based on the following sequential criteria that apply to both
heavy-chainand light-chain contigs as follows: (1) identical Vand/genes
usage; (2) identical junctional CDR3 amino acid length and (3) CDR3
sequence similarity—for TCRs, 100% nucleotide sequence identity
at the CDR3 junction is recommended while the default setting for
BCRsistouse 85%amino acid sequence similarity (based on Hamming
distance). Single-cell V(D)) networks are constructed using adjacency
matrices computed from pairwise Levenshtein distance of the full
amino acid sequence alignment for TCR/BCR(s) on a per-cell basis. A
minimum-spanning tree is then constructed on the adjacency matrix
foreach clone/clonotype, creating asimple graph with edgesindicating
the shortest total edit distance between a cell and its neighbor. Cells
with a total pairwise edit distance of zero are then connected to the
graphtorecover edges trimmed off during the minimum-spanning-tree
construction step. A graph layout is then computed either using the
Fruchterman-Reingold algorithm in networkx (>v2.5) or Scalable
Force-Directed Placement algorithm implemented through graph-tool
(v2.46) package’”’. Visualization of the resulting single-cell V(D)]
networkis achieved via the transfer of the graphtorelevant‘AnnData’
slots, allowing for access to plotting tools inscanpy. The resulting V(D)
J network enables computation of Gini coefficients based on cluster/
cell size/centrality distributions, as discussed previously*.

Pseudobulk V(D)J feature space. Pseudobulk construction requires
pseudobulk assignment information of cells, along with Vand/genes
for the cells’ identified primary TCR/BCR contigs (selected based
on productive status and highest UMI count). The former is a cell by
pseudobulk binary matrix, which can be either explicitly provided by
the user or inferred from unique combinations of cell-level discrete
metadata. While the code s calibrated to work with Dandelion’s struc-
turing by default, it can work with any V(D)) processing provided it
stores cell-levelinformation on primary per-locus V/D/J calls. The input
isused to generate a pseudobulk by V(D)) feature space, with the V(D))
calls converted to abinary matrix, added up for each pseudobulk, and
normalized to aunitsumona per-pseudobulk, per-locus, per-segment
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basis. The cell by pseudobulk information is stored in the resulting
object for potential communication with the original cell space. Util-
ity functions are provided for compatibility with Palantir®? output for
trajectory inference.

Nonproductive TCR/BCR contigs

Single-cell BCR, a TCR and y6TCR data from ref. 3 were remapped
with cellranger vdj (v6.1.2) and processed further using Dandelion as
described above. For all samples, contigs were extracted from ‘all_con-
tig_igblast_db-all.tsv’ orin the case whereby ‘all_contig_igblast_db-all.
tsv’wasempty, ‘all_contig_igblast_db-fail.tsv’ was used. Preprocessed
and annotated scRNA-seq data was downloaded from https://devel-
opmental.cellatlas.io/fetal-immune. Only contigs from annotated
cells were kept for downstream analysis. For each contig, productive
status was obtained from the column ‘productive’, and the causes for
nonproductive contigs were extracted from ‘vj_in_frame’ (is ‘F’if there
isaframeshift), ‘stop_codon’ (is ‘T if there is a premature stop codon)
and ‘v_gene_present’ (is ‘False’if Vgene is absent) columns.

Cycloheximide treatment on PBMC

A vial of frozen PBMCs was acquired from Stemcell Technologies
(70025.1) withinformed consent (as stated by Stemcell Technologies)
and approval from the Yorkshire & The Humber—Leeds East Research
Ethics Committee (19/YH/0441). Frozen PBMCs were thawed in pre-
warmed RF10 media, which was RPMI (Corning, 10-041-CV) supple-
mented with 10% FBS (Gibco, A4766801) and penicillin/streptomycin
(Sigma-Aldrich, P4333). Cells were pelleted by centrifugation at 500g
for 5 minandresuspended in RF10 media, and splitbetweentwo10 cm
Petridishes. Control PBMCs were thenincubatedin a total of 10 mIRF10
mediaat37 °Cfor2 h, whereastreated PBMCs were incubated in RF10
supplemented with cycloheximide (Sigma-Aldrich, C4859-1ML; final
concentration of 100 pg ml™). After incubation, control and treated
PBMCs were washed with ice-cold RF10 and resuspended in 2% FBS
in PBS (Gibco, 14190144). For treated PBMCs, both the washing and
resuspension buffer contained 100 pg ml™ cycloheximide.

Control and treated PBMCs were then loaded onto two separate
channels of the chromium chip from chromium single cell V(D)J kit (10X
Genomics 5’ v2PN-1000263) following the manufacturer’sinstructions
before dropletencapsulation on the Chromium controller. Single-cell
cDNA synthesis, amplification, gene expression (GEX) and targeted BCR
and «TCR libraries were generated. Sequencing was performed on
thellluminaNovaseq 6000 system. The gene expression libraries were
sequenced at atarget depth of 50,000 reads per cell using the follow-
ing parameters: Readl, 26 cycles; i7, 8 cycles;i5, 0 cycles and Read2, 91
cyclestogenerate 75-bp paired-end reads. BCRand TCRlibraries were
sequenced at atarget depth of 5,000 reads per cell.

Raw scRNA-seq reads were mapped with cellranger 3.0.2 with
Ensembl 93-based GRCh38 reference. Low-quality cells were filtered
out (minimum number of reads >2,000, minimum number of genes
>500, maximum number of genes <7,000, maximum mitochondrial
reads fraction <0.2 and maximum scrublet’® (v0.2.1) doublet score
<0.5). Data normalization and log transformation were performed
using scanpy™ (v1.9.1) (scanpy.pp.normalize_per_cell(counts_per_
cell_after=10e4) and scanpy.pp.loglp). Highly variable genes were
then selected (scanpy.pp.highly_variable_genes), and PCA (scanpy.
pp.pca), neighborhood graph (scanpy.pp.neighbors) and UMAP
(scanpy.tl.umap) were computed. Automatic annotation was done
using celltypist (v1.2.0) (celltypist.annotate(model ="Immune_All_Low.
pkl', majority_voting =True)).

Single-cell afTCR and BCR sequencing data were mapped with
cellranger vdj (v6.1.2) and processed further using Dandelion, as
described above. For all samples, contigs were extracted from ‘all_con-
tig_igblast_db-all.tsv’ orin the case whereby ‘all_contig_igblast_db-all.
tsv’ was empty, ‘all_contig_igblast_db-fail.tsv’ was used. Only contigs
from annotated cells were kept for downstream analysis.

Factors associated with multi-) mapping
Logistic regression analysis. We used the following logistic regression
model to look for factors associated with multi-) mapping;:

Pi

logl_p_
L

= ﬁcell,c(i) + ﬁ/,/'(i) + ﬁVxV,i + ﬂcycloxV,ixcyclo,i

where p;is the probability of multi-) mapping presentin the ith contig,
c(i)andj(i) arethe celltype and the 5’ end/gene of the ith contig, respec-
tively, x,;is the indicator of whether V' geneis presentin the ith contig
and x.,.,; is the indicator of whether ith contig belongs to a cell that
had cycloheximide treatment. Here (B : ¢ € cell types),
(Beeny : j € 5" end J genes), B,and B, are parameters to be estimated.

To control for multiple testing, two-tailed Pvalues were adjusted
with BH procedure’. This was applied on all contigs from the
YSTCR, afTCR and BCR sequencing data that were identified within
high-quality annotated cells from ref. 3 and results are shown in Sup-
plementary Table 2, and it was also applied on contigs from the a3 TCR
and BCR sequencing data that were identified within high-quality
annotated cells from control/cycloheximide-treated PBMCs and results
areshownin Supplementary Table 3.

Splicing site motif analysis. For the lists of 5’ end /genes that had sig-
nificant (BH adjusted two-tailed P < 0.05) association with increased or
decreased multi-) mapping from Supplementary Table 2, the sequences
ofthelast1lnucleotides ateach gene’s 3’ ends with the first ten nucleo-
tides of its 3’ end intron were extracted from the 10X GRCh38 2020-A
reference. Sequence logos showninFig. 2e were generated on https://
weblogo.berkeley.edu/logo.cgi (ref. 80).

YOS TCR annotation comparison

To compare our YSTCR annotations against the 10X cellranger vdj out-
putin the 33 y§TCR libraries’, we performed two additional mappings
following 10X y8TCR support instructions. In one, the 5.0.0 reference
was modified according to10X instructions by replacing allinstances of
TRGwithTRA and TRD with TRB. The reference was filtered to just TRG/
TRD sequences before this replacement to avoid erroneous sequence
overlaps. For the other, we performed the alignment with cellranger
v7.0.0 with the accompanying reference (v7.0.0). The output of these
two mappings was compared with the cellranger-Dandelion preproc-
essing pipeline described above. The number of high confidence ySTCR
contigs and high confidence productive y§TCR contigs were determined
foreachmapping and each sample, and mappings were compared with
the Wilcoxon signed-rank test. The effect size r is the rank correlation,
whichis the signed-rank test statistic divided by the total rank-sum®.

Differential V(D)J usage in adult T cell subsets

Preprocessed and annotated scRNA-seq data of TLC and ILCs with
paired aBTCR information from ref. 5 was downloaded from https://
www.tissueimmunecellatlas.org/. Only cells within the T cell subsets
with paired aTCRwere included inthe downstream analysis. T_CD4/
CD8was excluded as alow-quality cell cluster. The cells were then pseu-
dobulked by donor ID and cell type, and the pseudobulk V(D)) feature
space was created with TRAV, TRAJ, TRBV and TRBJ. Only pseudobulks
withatleast ten cells were kept. PCA, neighborhood graph and UMAP
of the pseudobulk V(D)J feature space were computed using scanpy**
(v1.9.1) with default settings (scanpy.pp.pca, scanpy.pp.neighbors,
scanpy.tl.umap).

For low-level cell type annotations, Tem/emra_CD8, Tnaive/
CM_CDS8, Trm/em_CD8 and Trm_gut_CD8 were grouped into CD8"
T, and Teffector/EM_CD4, Tfh, Tnaive/CM_CD4, Tnaive/CM_CD4_
activated, Tregs and Trm_Th1/Th17 were grouped into CD4" T,
while MAIT was left as a separate annotation. For differential V(D)
J usage, Wilcoxon rank-sum test was performed using scanpy.
tl.rank_genes_groups(method="wilcoxon’).
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Pseudotime inference from DP to mature T cells

Data integration and filtering. sScRNA-seq data of human fetal lymphoid
cells from ref. 3 was integrated with Dandelion preprocessed afTCR,
BCR and YG6TCR data (see section ‘Nonproductive TCR/BCR contigs’,
using all_contig_igblast_db-all.tsv for all samples) with dandelion.
tl.transfer. Two samples from F67, F67_TH_CD137_FCAImmP7851896
andF67_TH_MAIT_FCAImmP7851897 were excluded fromthe analysis as
they were sorted for specific T cell subpopulations, instead of the CD45
sortingin all other donorsamples, and inclusion might resultin biased
TCR sampling within this donor. Only DP(P)_T, DP(Q)_T, ABT(ENTRY),
CD8"Tand CD4'T cellswith productive TRA and TRBwere includedin
thetrajectory analysis. Neighborhood graph (scanpy.pp.neighbors(n_
neighbors=50)) and UMAP (scanpy.tl.umap) were recalculated using
scVllatent factors as the initial data was integrated with scVI®

Pseudotime inference from neighborhood V(D)J feature space.
Neighborhoods were sampled using Milo** (milopy v0.1.0) (milo.make_
nhoods). Cells were pseudobulked by the sampled neighborhoods and
the V(D)J feature space was created with cells’ primary TRAV, TRAJ,
TRBV and TRBJ genes. The cell type annotation of each neighborhood
was assigned to be the most frequent annotation of the cells within that
neighborhood. PCA, neighborhood graph and UMAP of the neighbor-
hood V(D)) feature space were computed using scanpy™ (v1.9.1) with
defaultsettings (scanpy.pp.pca, scanpy.pp.neighbors, scanpy.tl.umap).

For pseudotime trajectory analysis, Palantir®? (v1.0.1) was used
and diffusion map was computed using the first five principal com-
ponents (PCs; (palantir.utils.run_diffusion_maps(n_components=5),
palantir.utils.determine_multiscale_space). The root cell was chosen
to be the DP(P) T neighborhood with the smallest value on UMAP1
axis, and the two terminal states were chosen with the largest and
smallest values on the UMAP2 axis for CD4" T and CD8" T neighbor-
hoods, respectively (Extended Data Fig. 3d). Pseudotime and branch
probabilities to the terminal states were then computed with palantir.
core.run_palantir(num_waypoints = 500).

Imputed pseudotime and branch probabilities were then pro-
jected back fromneighborhoods (Fig. 3c) to cells (Fig. 4a, top panel) by
averaging the parameters fromall neighborhoods agiven cell belongs
to, weighted by the inverse of the neighborhood size. Cells that did not
belong to any neighborhood were removed (91 0f17,248).

For pseudotimeinferred with other trajectory inference methods
asshown in Extended DataFig. 7, monocle3 (ref.**; 0.2.3.0) was applied
onthe UMAP embedding of the neighborhood V(D)) feature space and
diffusion pseudotime® was applied using scanpy.tl.dpt function with
defaultsettings. The same root cell neighborhood was used as above.

Pseudotime inference from neighborhood GEX feature space. Raw
gene counts from scRNA-seq data were pseudobulked by the same cell
neighborhoods as above. Datanormalizationandlog transformation were
performed usingscanpy' (v1.9.1) (scanpy.pp.normalize_per_cell(counts_
per_cell after=10e4) and scanpy.pp.loglp).Highly variable genes werethen
selected (scanpy.pp.highly variable_genes), and PCA (scanpy.pp.pca),
neighborhood graph (scanpy.pp.neighbors) and UMAP (scanpy.tl.umap)
oftheneighborhood GEX feature space were computed. Pseudotime tra-
jectoryinference was done similar to above with the first five PCs. The root
cellwas chosentobethe DP(P) T neighborhood with the smallest value on
UMAP1 axis, and the two terminal states were chosen with the smallest and
largest values on the UMAP2 axis for CD4" T and CD8' T neighborhoods,
respectively (Extended Data Fig. 5¢). Imputed pseudotime and branch
probabilities were then projected back from neighborhoods (Extended
DataFig. 5d) to cells (Fig. 4a, bottom right panel).

Pseudotime inference from single-cell GEX. Pseudotime trajectory
inference was performed with Palantir®” (v1.0.1) using the first 20 scVI
latent factors. The root cell was chosen to be the DP(P) T cell with the
largest value on UMAP2 axis, and the two terminal states were chosen

with the largest value on the UMAP2 axis for CD8+ T and the smallest
value onthe UMAP1 axis for CD4" T cells, respectively (Extended Data
Fig. 5a). Results of the inferred pseudotime and branch probabilities
are shown in Extended Data Fig. 5b.

Correlation between pseudotime ordering and relative TRAV/
TRAJ locations. The relative genomiclocation of each TRAV gene was
encoded numerically based on its order among all TRAV genes from
5’to3’ onthe genome, and similarly for TRAJ. For each neighborhood,
itsrelative TRAV or TRAJ location was computed by the average relative
locations of all cells within that neighborhood. Only neighborhoods
that had more than 90% cells being DP(Q) T cells were selected. The
relative pseudotime order was plotted against the average relative
TRAV or TRAJ location for each neighborhoodin Fig.4b.Local Pearson’s
correlations were then computed over sliding windows of 30 adjacent
neighborhoods on the pseudotime order (Extended Data Fig. 6a,b).

Correlation between gene expression and branch probabilities
to CD8' Tin abT(entry) cells. Pearson’s correlations were computed
between gene expression and branch probabilities to CD8* T lineage
withinabT(entry) cells for allgenes. Two-tailed Pvalues were adjusted
for multiple testing with BH procedure. Results are shown in Fig. 4c,
Extended Data Fig. 6d and Supplementary Table 6.

VDJ-based dimensionality reduction with CONGA

Preprocessed and annotated scRNA-seq data of human fetal lymphoid
cells fromref. 3 was downloaded from https://developmental.cellatlas.
io/fetal-immune. Matching aSTCR samples had their all_contig_anno-
tations.csv cellranger output files flagged with the sample IDs for
both cell and contig IDs and were subsequently merged into a single
file and subset to just high confidence contigs for cells present in the
scRNA-seq object. This file was used on input for CONGA’s** (v0.1.1)
setup_10x_for_conga.py script, which produced a tcrdist-based PCA
representation of the cells’ VD) data. The PCA coordinates were used to
compute aneighborhood graph and UMAP representation (Extended
DataFig. 4a), using default scanpy settings.

Joint embedding of single-cell gene expression and TCR with
mvTCR

The same cells for which we performed pseudotime inference from DP
tomature T cells above were used in the mvTCR? (version under devel-
opment, cloned from the repo at commit 528d3el11a360fc4b0f09d-
782b88f5ec7de9283d6) trial. Clonotypes were called based on CDR3
nucleotide sequence identity of the cells’ primary TRA and TRB chains
(scirpy.pp.ir_dist, and scirpy.tl.define_clonotypes(receptor_arms="all’,
dual_ir="primary_only’)).

Normalized and log-transformed data were used asrecommended
inmvTCR’s tutorial. The donor ID was one-hot encoded and supplied
asaconditional variable. Eighty percent of cells were used as training
data, the remaining 20% for validation. The models were trained for
200 epochs. Three runs were performed with the GEX to TCR ratio
varying between 1:1, 2:1 and 3:1. Each run produced 15 trials and each
trial had a different combination of model hyperparametersresulting
froman automated hyperparameter grid search. The ‘best’ trial (lowest
validation loss) wasindicated at the end of each run; however, whenwe
manually inspected all the trial results, we found the ‘best’ trials showed
strong variations between different donors. Thus, we selected one
representative result from each run with minimal cross-donor batch
effects for Extended Data Fig. 4b.

Pseudotime inference combining ILC/NK and T cells

Pseudotime inference using TRBJ. scRNA-seq data of human fetal
lymphoid cells fromref. 3 wasintegrated with aBTCR data as described
above. Only DN(early) T, DN(P)_T, DN(Q)_T, DP(P)_T, DP(Q)_T, ILC2,
ILC3, CYCLING ILC,NK and CYCLING _NK cells with TRBJ were included
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for the trajectory analysis. Neighborhood graph (k= 50) and UMAP
were recalculated using scVI latent factors similar to those above.

For pseudotime trajectory analysis, Palantir® (v1.0.1) was used and
adiffusion map was computed using the first five PCs. The root cell was
chosentobethe neighborhood with the highest CD34 expression, and
the two terminal states were chosen with the largest and smallest values
on the UMAP1 axis for T and NK/ILC cell neighborhoods, respectively
(Extended DataFig.10a). Pseudotime and branch probabilities to the
terminal states were then computed and projected back from neigh-
borhoods (Fig. 5b) to cells (Fig. 5¢ top panel).

Gene expressiontrend in DN T cells along pseudotime. Chatterjee’s
correlations” were computed between gene expression and inferred
pseudotime within DN T cells for all genes that were expressed in at
least 50 cells. Chatterjee’s correlation was choseninstead of Pearson’s
or Spearman’s correlation to look for any functional change and not
restricted to a monotonic change. TFs*> and genes encoding cell sur-
face proteins that had significantly high Chatterjee’s correlation with
pseudotime (BH adjusted P < 0.05; correlation coefficient >0.1) were
showninFig. 5cand Extended Data Fig. 10b, respectively.

Other visualization

In general, results were plotted using seaborn (v0.11.1; python) or
ggplot2 (v3.3.3; R). Other single-cell plots were plotted using scanpy
(v1.9.1). Visualization of Milo neighborhood graphs was plotted in R
using ggraph (v2.1.0) and igraph (v1.2.6). Correlation/volcano plots
were plotted in R using ggplot2 (v3.3.3). dplyr (v1.0.5) was used for
general data frame handling for plottinginR.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw sequencing data for newly generated sequencing libraries have
been deposited in ArrayExpress (accession number E-MTAB-12524).
Other datasets used are available at https://developmental.cellatlas.
io/fetal-immune and https://www.tissueimmunecellatlas.org/.

Code availability

Dandelion is implemented as an open-source package in Python 3
(https://github.com/zktuong/dandelion) with tutorials available at
https://sc-dandelion.readthedocs.io/en/latest/. The tool and work-
flow are also available through an interactive online Google Colab
notebookat https://colab.research.google.com/github/zktuong/dan-
delion/blob/master/container/dandelion_singularity.ipynb. Code and
datausedto generate figures and perform analyses in the manuscript
are available at https://github.com/zktuong/dandelion-demo-files/
dandelion_manuscript.
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Extended DataFig. 2 | Dandelion offers improved contig annotations.

a, Left: barplot of proportion of contigs that are productive or non-productive
ineach locus. Right: barplot showing the causes of non-productive contigs
ineachlocus. For both plots, sc-y8TCR, -aTCR and -BCR data were taken
from Suo et al. 2022° excluding thymus samples. b, Schematiciillustration
showing that mRNA without V genes would be captured by 5’RACE + Switch
oligo technique but not by multiplex PCR strategy. ¢, Pointplot of proportion
of contigs with multi-) mapping in the presence of V gene in control and

cycloheximide-treated PBMC samples. Points are colored by locus of TCR/BCR.

For both IGH and IGL/IGK, the proportions were 0% in control and treated.

d, Schematicillustration showing the factors associated with multi-) mapping
and the proposed mechanisms. e, Boxplots of sc-ySTCR contig counts
annotated by 10X cellranger vdjv6.1.2 versus v7.0.0 using data from n = 33
independent samples from Suo et al. 2022°. Left: all high confidence contigs
(P-value 5.43e-6,r 0.91in the two-sided Wilcoxon signed-rank test). Right:

high confidence productive contigs (P-value1.69e-6,r 0.96 in the two-sided
Wilcoxon signed-rank test). Boxes capture the first to third quartiles and whisks
span afurther 1.5X interquartile range on each side of the box.
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Extended DataFig. 3 | V(D)) feature space. a, Gene expression UMAP of all neighborhood, colored by cell types. The point size represents neighborhood

T cells from Conde et al. 2022°, colored by donor ID (left) or high-level cell type size, with connecting edges representing overlapping cell numbers between
annotations (right). Each point represents a cell. b, UMAP of the pseudo-bulk any two neighborhoods. Only edges with more than 30 overlapping cells are
V(D)] feature space of the same cells asin a, colored by donor ID (left) or high- shown. The layout of nodes is determined by the position of the neighborhood
level cell type annotations (right). Each point represents a cell pseudo-bulk. index cellinthe UMAP on the left. d, The root cell and terminal states selected

¢, Left: UMAP of DP to mature T cells with paired productive afTCR in data from for pseudotimeinferencein Fig. 3c. e, Gene expression trends over CD8 + T

Suo et al.2022° Each point represents a cell, colored by cell types. Right: cell pseudotime imputed with Palantir®. Only the top 10 most frequently used TRAV
neighborhood graph on the same UMAP embedding. Each point represents a cell or TRAJ genes are shown.
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Extended DataFig. 5| T cell development pseudotime inference comparison.
a, DP to mature T cells with paired productive aBTCRin data from Suo et al.
2022°, on the same UMAP embedding as in Fig. 4a and Supplementary Fig. 3c. The
first two panels show the root cell and terminal states selected for pseudotime
inferred directly from single-cell gene expression. The last panel shows the cell
types. b, Top: pseudotime and branch probabilities inferred directly from single-
cell gene expression on the same UMAP embedding as in a. Bottom: scatterplot
ofbranch probability to CD8+ T against pseudotime. Each point represents a cell.

¢, UMAP of neighborhood GEX space, with the same neighborhoods as sampled
inSupplementary Fig. 3c and UMAP embedding computed on gene expression
pseudo-bulked by neighborhoods. Each point represents a cell neighborhood.
The first two panels show the root cell and terminal states selected for
pseudotime inferred from neighborhood GEX space. The last panel shows the cell
types.d, Inferred pseudotime, and branch probabilities to CD8+ T and to CD4+ T
respectively overlaid onto the same UMAP embeddingin c.
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Extended Data Fig. 6 | Comparing pseudotime inferred from neighborhood
V(D)J space or GEX space. a, Pearson’s correlation coefficients of pseudotime
order and average relative TRAV location over sliding windows of 30 adjacent
neighborhoods on the pseudotime order (left: pseudotime inferred from
neighborhood V(D)) space; right: pseudotime inferred from neighborhood

GEX space). Y-axisis the correlation coefficient and the x-axis is the median
pseudotime order of the 30 adjacent neighborhoods. The color of the points
represents statistical significance (orange: P-value from the Pearson’s correlation
<0.05; blue: P-value > 0.05). The red dashed lines mark the correlation coefficient
of 0.b, The same plot asin abut for TRAJ. ¢, Scatterplots of branch probability to

CD8+ T against pseudotime in abT(entry) cells. Each point represents a cell.
Top panel: pseudotime inferred from neighborhood V(D)) space asin

Fig. 4a top panel. Bottom panel: pseudotime inferred from neighborhood GEX
spaceas in Fig. 4a bottom right panel. d, Volcano plot summarizing results of
TFsthat are correlated with branch probabilities to CD8+ T lineage in V(D))
pseudotime within abT(entry) cells. The y-axis is the -log,,(BH adjusted P-value)
and the x-axis is the correlation coefficient. Labeled TFs that had significant
(BH adjusted P-value < 0.05) positive correlations (correlation coefficient > 0.1)
were coloredinred, the ones with significant negative correlations (correlation
coefficient <-0.1) were colored in blue, and the rest were colored in black.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Non-productive TCR. a-c, Boxplot of the proportion

of cells with productive (blue) or non-productive (orange) TRA (a), TRG (b) and
TRD (c) indifferent fetal ymphocyte subsets. Each point represents a sample
and data were taken from Suo et al. 2022°. Only samples with at least 20 cells

are shown. Boxes capture the first to third quartiles and whisks span a further
1.5Xinterquartile range on each side of the box. d, Boxplot of the proportion of
cells with non-productive TRB in different fetal lymphocyte subsets, colored by

organs. Each point represents asample. Only samples with at least 20 cells are
shown. Boxes capture the first to third quartiles and whisks span a further 1.5X
interquartile range on each side of the box. Sample sizes (n) of all box plots from
lefttorightare3,12,10,15,13,13,1,1,4,2,12,3,2,8,3,1,2,1,12,3,2,8,2,1,2,12,3, 2,
7,1,12,1,2,6,1,12,1,2,8,2,2,4,3,1,4,2,7,3,2,6,3,1,4,5,3,2,7,6,1,7,8,3,3,2,8,5,
2,7,1,1,3,2,7,2,1,4,2,1,1,3,10,1,4,11,1,2,3,10,1,1,7,10,1,2,1,7,9,2,5,1,4,3,1,6,
56,13,2,8,2,1,3,1,2,3,2,3,3.
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pseudotime that falls within each bin. Genes selected here had significantly
high Chatterjee’s correlation with pseudotime (BH adjusted P-value < 0.05, and
correlation coefficient > 0.1). ¢, Heatmap of gene expression for TFs known to be
importantin mouse DN T cell development**, across pseudotime in human fetal
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human are highlighted inred.
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