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Gene-level alignment of single-cell 
trajectories
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Jong-Eun Park    1,6, Kerstin B. Meyer    1, Bianca Dumitrascu    7,8 & 
Sarah A. Teichmann    1,9,10,11 

Single-cell data analysis can infer dynamic changes in cell populations, for 
example across time, space or in response to perturbation, thus deriving 
pseudotime trajectories. Current approaches comparing trajectories 
often use dynamic programming but are limited by assumptions such 
as the existence of a definitive match. Here we describe Genes2Genes, a 
Bayesian information-theoretic dynamic programming framework for 
aligning single-cell trajectories. It is able to capture sequential matches and 
mismatches of individual genes between a reference and query trajectory, 
highlighting distinct clusters of alignment patterns. Across both real world 
and simulated datasets, it accurately inferred alignments and demonstrated 
its utility in disease cell-state trajectory analysis. In a proof-of-concept 
application, Genes2Genes revealed that T cells differentiated in vitro match 
an immature in vivo state while lacking expression of genes associated with 
TNF signaling. This demonstrates that precise trajectory alignment can 
pinpoint divergence from the in vivo system, thus guiding the optimization 
of in vitro culture conditions.

Single-cell technologies, especially single-cell RNA sequencing 
(scRNA-seq), have revolutionized our understanding of biology and 
opened up new avenues of research1. Their ability to observe thousands 
of genes per cell simultaneously enables the description of transitional 
cell states and dynamic cellular processes (for example differentiation/
development; response to perturbations). The computational task 
of deriving a ‘timeline’ for a dynamic process (for example based on 
transcriptomic similarity) is referred to as ‘pseudotime trajectory infer-
ence’2,3. One key challenge is how to compare two (or more) trajectories, 

for example in control versus drug treatment groups, or in vitro cell 
differentiation versus in vivo cell development (Fig. 1a) where identi-
fying differentially regulated genes can guide us to refine in vitro cell 
differentiation.

Trajectory comparison poses a time series alignment problem, 
which is addressable using dynamic programming4 (DP). A popular DP 
algorithm to align two single-cell trajectories is dynamic time warping5 
(DTW). The goal is an optimal mapping (pairwise sequential corre-
spondences between the time points of two single-cell trajectories), 
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optimal alignment. While DTW is a powerful approach, its main limita-
tions are: (1) the assumption that every time point in reference matches 
with at least one time point in query; (2) the inability to identify mis-
matches (unobserved state or substantial differences between two 
series) occurring as insertions and/or deletions (indels); and (3) a 

which captures matched and mismatched cell states. Several studies6–11 
including the widely-used CellAlign7 employ DTW to analyze corre-
spondences and timing differences12. Current practice is to first inter-
polate gene expression time series, and then minimize the Euclidean 
distance of expression between the matched time points to find their 
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Fig. 1 | Computational alignment of single-cell transcriptomic trajectories.  
a, Schematic of the concept of single-cell trajectory alignment. The input is 
single-cell transcriptomic data of a reference and a query that change 
dynamically (left), for example, in vivo cell development and in vitro cell 
differentiation, control and drug-treated cells in response to perturbation, 
responses to vaccination or pathogen challenge in healthy and diseased 
individuals. Aligning the reference and query can capture matches and 
mismatches (middle), supporting further downstream analysis (right).  
b, Different alignment states and their theoretical origins. Dynamic time warping 
and biological sequence alignment complement each other5,15,16 when capturing 
matches (including warps) and indels (left). An alignment (nonlinear mapping) 
between time points of the discretized reference (R) and query (Q) trajectories 
shown in a (middle). Between a reference time point Rj and query time point Qi, 
there may exist five different states of alignment: 1-1 match (M), warps (1-to-many 
expansion (V) or many-to-1 compression (W) match) and mismatch (insertion (I)/
deletion (D) denoting a significant difference in one system compared to the 

other) (right). c, Example alignment path across a pairwise time point matrix 
between R and Q trajectories. Diagonal lines (green) refer to matches; vertical 
lines refer to either insertions (red) or expansion warps (green); horizontal lines 
refer to deletions (red) or compression warps (green). Any matrix cell (i, j) 
denotes the pairing of two Rj and Qi time points. d, An example gene alignment 
generated by the Genes2Genes framework. Interpolated log1p-normalized 
(per-cell total raw transcript count normalized to 10,000 and log1p-transformed) 
expression (y axis) between reference (green) and query (blue) against their 
pseudotime (x axis) (left). The bold lines represent mean expression trends and 
faded data points are 50 random samples from the estimated expression 
distribution at each time point. Black dashed lines visualize matches (including 
warps) between time points. Corresponding nonlinear mapping between R and Q 
time points shown in the left (right). Corresponding five-state alignment string 
where subsequences over [M,V,W] and [I,D] denote matched regions and 
mismatched regions, respectively (bottom). Illustrations in a–c were created 
using BioRender (https://biorender.com).
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distance metric that only evaluates the difference of means rather than 
the distributions of gene expression.

Warps and indels are fundamentally distinct (Fig. 1b,c), as high-
lighted in discussions13,14 about integrating DTW with the concept of 
gaps in sequence alignment15,16. Both matches and mismatches between 
trajectories inform our understanding of temporal gene expression 
dynamics, specifically patterns such as divergence and convergence 
(Fig. 1d). A mismatch either implies an unobserved state or differential 

expression (DE), indicating a transit through a different cell state in 
one of the systems, or when cells in one condition have a significantly 
different distribution of expression for some genes. On the other hand, 
matches imply similar cell states, with warps indicating differences in 
their relative speeds of transition. Approaches such as analyzing cor-
relation or mutual information of binned expression along pseudotime 
will have limited accuracy in detecting warped/unobserved states, 
as it only assumes one-to-one mappings. In contrast, alignments can 
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Fig. 2 | Overview of the Genes2Genes alignment framework and workflow for 
comparing single-cell transcriptomic trajectories. Given log1p-normalized 
cell-by-gene expression matrices of a reference (R) and query (Q) and their 
pseudotime estimates, G2G infers individual alignments for all genes of interest. 
It first interpolates data by extending mean-based interpolation in Alpert et al. 
(2018)7 to distributional interpolation and then runs Gotoh’s DP algorithm16 
adapted for all the five alignment states (M,W,V,I,D) defined in Fig. 1b. All 
reported alignments are then clustered and used to deliver statistics on the 
overall alignment between R and Q, supporting further downstream analyses. 
The DP algorithm utilizes a match cost function defined under MML26 inference 
framework (top left). Given a hypothesis (model) and data, MML defines the total 
message length of encoding them for lossless compression along an imaginary 
message transmission. G2G defines two hypotheses: (1) Φ: Rj  and Qi time points 
mismatch and (2) A: Rj  and Qi time points match. Under Φ, the message length is 
the sum of independent encoding lengths of their interpolated expression data 

and corresponding Gaussian distributions. Under A, the message length is the 
joint encoding length of their interpolated expression data under a single 
Gaussian distribution (either of Rj  or Qi). The match cost is computed as the 
difference of A and Φ per-datum encoding lengths. The DP algorithm 
incorporates a symmetric five-state machine which can generate a string over the 
alphabet, Ω = [M, W, V, D, I] describing the optimal sequential alignment states 
(Fig. 1b) between R and Q time points (middle left). Each arrow represents a state 
transition. Arrows with the same hatch mark implies equal probability of state 
transition. G2G computes a pairwise Levenshtein distance matrix across all 
five-state alignment strings to cluster genes of similar alignment pattern (bottom 
left). Example output of five-state alignment strings for all genes (top right). 
Example clustermap showcasing the clustering structure of alignments resulted 
from agglomerative hierarchical clustering (bottom right). The color represents 
the Levenshtein distance. Illustrations were created using BioRender  
(https://biorender.com).
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properly identify DE genes between trajectories. Laidlaw et al.17 also 
showed that trajectory alignment successfully captures DE genes 
undetectable by non-alignment methods18,19.

Here we present Genes2Genes (G2G; Fig. 2 and Methods), a new 
framework for aligning single-cell pseudotime trajectories of a refer-
ence and query system at single-gene resolution. G2G utilizes a DP 
algorithm that handles matches and mismatches in a formal way, by 
combining the classical Gotoh’s algorithm16 with DTW5 and employing 
a Bayesian information-theoretic scoring scheme to quantify distances 
of gene expression distributions. This overcomes ad hoc thresholding7 
and/or post hoc processing of typical DTW outputs (as in TrAGEDy17, the 
recent advancement built on CellAlign7). G2G (1) generates descriptive 
gene alignments; (2) identifies gene clusters of similar alignment pat-
terns; (3) derives aggregate, cell-level alignment across all or subset of 
genes; (4) identifies genes with differential dynamic expression; and 
(5) explores their associated biological pathways.

We validate G2G’s ability to accurately capture different alignment 
patterns in simulated datasets, benchmarking against CellAlign7 and 
TrAGEDy17 (the current state-of-the-art of single-cell trajectory align-
ment) and demonstrate gene-level alignment between two conditions 
in a published real dataset20. We further utilize G2G in a healthy versus 
disease comparison in idiopathic pulmonary fibrosis (IPF)21. Finally, we 
show how G2G aligns in vitro and in vivo T cell development, finding that 
TNF signaling in in vivo T cell maturation is not recapitulated in vitro and 
validate G2G’s use for optimizing in vitro cell engineering.

Results
Genes2Genes aligns trajectories using dynamic programming
G2G is a new DP framework to infer and analyze gene trajectory align-
ments between a single-cell reference and query. Given a reference 
sequence R ({Ri}

|R|
i=1) and query sequence Q ({Qi}

|Q|
i=1), two discrete series 

of time points, a computational alignment between them can inform 
us of the one-to-one matches, one-to-many matches (expansion warps), 
many-to-one matches (compression warps) and indels between their 
time points in sequential order, denoted by the five states: M,V,W,I,D, 
respectively (Fig. 1b). While matches imply similarity between tran-
scriptomic states of R and Q, indels (also called gaps) imply mismatches 
(differential/unobserved transcriptomic states compared to each 
other). A standard DP alignment algorithm optimizes the mapping 
between two sequences by constructing a pairwise cost matrix and 
generating the path that minimizes the total cost (Fig. 1c). This uses a 
scoring scheme to quantify correspondences between every pair of R 
and Q time points.

Unlike DTW and biological sequence alignment, G2G implements 
a DP algorithm that handles both matches (including warps) and mis-
matches jointly, querying each gene. This extends Gotoh’s three-state 
algorithm16 (defining time-efficient DP recurrences with affine gap 
scheme22–24 over M,I,D states) to accommodate V,W warp states 

(Fig. 1b), allowing a nonlinear mapping between the pseudotime axes 
of R and Q. Figure 1d exemplifies a gene alignment generated by G2G, 
described as a five-state string defining matches and mismatches of R 
and Q time points in sequential order (left to right), similar to how a 
DNA–protein pairwise alignment is reported.

Our DP scoring scheme incorporates a cost function based on 
minimum message length (MML) inference25–27 (top left of Fig. 2 and 
Supplementary Fig. 1) and the state transition probabilities from a 
five-state machine (middle left of Fig. 2). The MML criterion allows 
computing a symmetric cost (named MML distance) for matching any 
two Rj and Qi time points based on their gene expression distributions. 
This accounts for their differences in both mean and variance, acknowl-
edging that either trajectory may be noisier. The five-state machine 
defines a symmetric cost of assigning an alignment state for Rj and Qi. 
This machine has been empirically fine-tuned on a simulated dataset. 
Each cost term is computed as the Shannon information28 I  measured 
in ‘nits’ under the probability model of the corresponding events E , 
that is, I(E)= -log(Pr(E)) nits (Methods).

Overview of the G2G framework
G2G is composed of several components, which include input preprocess-
ing, DP alignment, alignment clustering and downstream analysis (Fig. 2).

G2G’s inputs are log1p-normalized (per-cell total raw transcript 
count normalized to a constant over all genes and transformed to 
log(normalized count + 1)) scRNA-seq matrices of the reference and 
query systems, and their pseudotime estimates. G2G first interpolates 
each gene expression trajectory. This initially transforms the pseudotime 
axis to the [0,1] range using min–max normalization, over which we take 
a predefined number of equispaced interpolation time points, similar to 
CellAlign7. For each interpolation time point, we estimate gene expres-
sion as a Gaussian distribution, considering all cells kernel-weighted7 by 
their pseudotime distance to this interpolation time point.

The interpolated gene trajectories of the reference and query 
are aligned using our DP algorithm, generating optimal gene align-
ments described as five-state strings (Fig. 1d and top right matrix of 
Fig. 2). The five-state string of a gene informs the percentage of match 
calling (M,V,W), termed ‘alignment similarity’. (Note that under sym-
metric costs, the alignment string is symmetric regardless of which 
dataset is the reference, only swapping between symmetric states 
I-D, W-V). The pairwise Levenshtein distance matrix between these 
strings can be used to reveal the diversity of gene alignments (for 
example 100% mismatched, 100% matched, 30% early-matched and 
late-mismatched), by running agglomerative hierarchical clustering 
(where an optimal grouping is determined by inspecting the mean 
silhouette coefficients under different distance thresholds of the 
linkage criterion). G2G generates a representative alignment for a 
cluster by aggregating its gene-level alignments (for example cluster 
of 100% matches represented by a string over M,V,W; cluster of 100% 

Fig. 3 | Genes2Genes outperforms the current state-of-the-art of trajectory 
alignment. a, Differences in the algorithms and outputs of CellAlign7, TrAGEDy17 
and G2G. CellAlign runs DTW, defining the state space Ω = [M, W, V] (Fig. 1b). 
TrAGEDy performs DTW post hoc processing, while G2G unifies DTW and gap 
modeling. Both of them define the state space Ω = [M, W, V, I, D] (Fig. 1b).  
b, Comparing features across CellAlign, TrAGEDy and G2G. c, A Gaussian 
process-based simulator is used to generate 3,500 simulated pairs of reference 
and query gene trajectories for benchmarking G2G against CellAlign and 
TrAGEDy, testing under three main classes of alignment patterns: matching, 
divergence and convergence. divergence and convergence are subcategorized 
based on their approximate time of bifurcation (early, mid and late), resulting in 
seven total patterns (each with 500 alignments). d, The three-state, cell-level 
alignment generated by CellAlign for each pattern (under 15 equispaced time 
points). e, The five-state, cell-level alignments generated by both modes of 
TrAGEDy (referred to as TrAGEDyMINIMUM and TrAGEDyNULL) and G2G. f, Percentages 
of accurate alignments by TrAGEDy and G2G across all patterns (left). Clustergram 

of the pairwise Levenshtein distance matrix across all G2G alignments, separating 
the distinct patterns using agglomerative hierarchical clustering (right).  
g, Comparing hierarchical clustering of the gene alignments generated by 
CellAlign, TrAGEDy and G2G; x axis is the number of clusters (representing 
varying clustering resolutions) in log scale; y axis is the mis-clustering rate (outlier 
percentage across all clusters). h, Cell-level alignment of two simulated 
trajectories with no shared process, with three example gene alignments 
generated by TrAGEDy and G2G. Five-state alignment strings from each method 
(left) and expression plots (right) of the three example genes. Column 1 shows 
interpolated gene expression (y axis) against pseudotime (x axis). The bold lines 
represent mean expression trends, while the faded data points are 50 random 
samples from the estimated expression distribution at each time point as 
generated under G2G. Columns 2–3 show the actual log1p-normalized expression 
(y axis) against pseudotime (x axis). Each point represents a cell. Illustrations in 
a–c were created using BioRender (https://biorender.com). All interpolations and 
alignment statistics were generated using our G2G framework.
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mismatches represented by a string over I,D;). G2G finally aggregates 
all gene-level alignments into a single, cell-level alignment, informing 
an average mapping between the trajectories. Both gene-level and 
cell-level alignments are useful when the alignment patterns are hetero-
geneous across genes. Altogether, these enable downstream analysis 
(for example gene set over-representation analysis).

G2G expands the capacity of DTW. G2G infers statistically-consistent 
matches and mismatches between reference and query time points. 
Such output is impossible from DTW (for example CellAlign7) as it 
maps all time points including those with transcriptomic differences 
(Fig. 3a). One could perform local DTW with user-defined thresholds7 or 
post hoc processing of DTW alignment (as in TrAGEDy17) to unmap dis-
similar time points, yet the underlying assumption of a definite match 
remains. This is particularly problematic for datasets with no shared 
process17. In contrast, G2G systematically disconnects mismatching 
time points without thresholding or post-processing (see Fig. 3a,b and 
Supplementary Table 1 for summarized comparison of the features 
that fundamentally distinguish G2G from CellAlign7 and TrAGEDy17).

G2G captures different alignment patterns in simulated data
To benchmark G2G against CellAlign7 and TrAGEDy17, we experimented 
on (1) a dataset with seven alignment patterns; (2) a real dataset with 
artificial perturbations; and (3) a negative control dataset. CellAlign7 
and TrAGEDy17 alignments were converted into five-state strings before 
comparison. TrAGEDy17 prunes DTW matches based on a ‘minimum 
dissimilarity score’ (hereafter, ‘TrAGEDyMINIMUM’), with an alternative 
to disregard the minimum (hereafter, ‘TrAGEDyNULL’).

Experiment 1. We simulated 3,500 pairs of matching, divergence and 
convergence trajectories with seven distinct patterns (Fig. 3c and 
Extended Data Fig. 1a–c; Methods). Each trajectory comprises 300 cells 
spread across pseudotime range [0,1]. Divergence and convergence 
groups represent early, mid and late bifurcation (approximately at time 
points tb ∈ (0.25, 0.5 and 0.75), respectively). We examined alignments 
for each pattern under 15 interpolation time points. The expected 
alignments were: 100% match for matching; matched region 
(start-match) + mismatched region (end-mismatch) for divergence; 
and mismatched region (start-mismatch) + matched region 
(end-match) for convergence. The match/mismatch lengths for diver-
gence/convergence depend on tb (Extended Data Fig. 1d,e). We used 
the accuracy rate (proportion of correct alignments) to fine-tune the 
five-state machine parameters set by G2G as default (Methods and 
Supplementary Table 2).

Figure 3d,e reports cell-level alignments from all methods. Both 
G2G and TrAGEDy correctly described the seven patterns (Fig. 3e). In 
contrast, CellAlign7 could not describe divergence and convergence 

(Fig. 3d). Across all patterns, G2G outperformed TrAGEDy in gene-level 
alignment (Fig. 3f left) with higher accuracy rates of 98.6%, 99.4%, 
99.8%, 100%, 99.2%, 98.2% and 99.2%, for matching, divergence (early, 
mid and late) and convergence (early, mid and late) pairs, respec-
tively. All distributions of match/mismatch lengths in divergence/
convergence alignments fell within the expected ranges (Extended 
Data Fig. 2a,b). TrAGEDyMINIMUM gave 66.26%, 28.57%, 95.87%, 96.86%, 
97.35, 96.15 and 88.2% accuracy rates, respectively, with divergence/
convergence alignments showing higher variability in their match/
mismatch lengths, thus falling beyond the expected ranges. TrAG-
EDyNULL gave 68.2%, 5.4%, 88%, 100%, 100%, 88% and 5.8% accuracy rates, 
respectively, with better length distributions than TrAGEDyMINIMUM. G2G 
showed fewer false mismatches on average for matching alignments 
compared to TrAGEDy, while also having fewer intermediate false mis-
matches compared to TrAGEDyMINIMUM. Notably, TrAGEDyNULL generated 
no intermediate false mismatches, yet yielded higher inaccuracy due 
to 100% matched or expected-order-swapped alignments.

G2G clustering separated the patterns very well (Fig. 3f, right); 
hierarchical clustering of alignments at the optimally chosen 0.22 
distance threshold gave 15 clusters, with only a 0.1% mis-clustering 
rate. (Extended Data Fig. 2c; see Methods for details on optimal thresh-
old selection). We compared this to CellAlign’s7 k-means clustering of 
genes based on their pseudotime shifts (differences between matched 
time points in gene-level DTW alignments). All mis-clustering rates 
were substantially higher (falling within the range of 42.6% and 60.4%) 
for k ∈ [7, 50] (Extended Data Fig. 2d) than G2G’s mis-clustering rate. 
CellAlign7 and TrAGEDy displayed higher noise and mis-clustering rates 
compared to G2G (Fig. 3g).

Experiment 2. To test G2G’s match detection in scRNA-seq data, we 
used a murine pancreatic development dataset29 subsetted to β-cell 
lineage (1,845 cells), considering 769 lineage-driver genes. We randomly 
split cells into reference and query, and simulated mismatches as a 
deleted portion (perturbation scenario 1) or changed portion (pertur-
bation scenario 2) of increasing size at the beginning of the trajectory 
(Extended Data Fig. 3a). We then performed gene-level alignments 
using G2G and TrAGEDy (under 50 interpolation time points) for each 
scenario and calculated their alignment similarities (Extended Data 
Fig. 3b,c). For perturbation scenario 1, both G2G and TrAGEDy align-
ment similarity decreased with increasing deletion sizes as expected 
across smaller perturbation sizes, although the detected mismatch 
length was shorter than expected for deletions larger than 20%. This 
is due to the relatively nonvarying gene expression between pseudo-
time bin 10–20 (Extended Data Fig. 3d), which caused warps instead of 
mismatches. Both methods were consistent in capturing this behavior. 
For perturbation scenario 2, alignment similarity had an expected 
maximum and minimum (Extended Data Fig. 3e). Generally, both 

Fig. 4 | Genes2Genes captures matches and mismatches at gene-level 
resolution. a, G2G alignment on a published time-course dataset7,20 of murine 
bone-marrow-derived dendritic cells stimulated with PAM (reference) or LPS 
(query). b, Aggregate alignment over the alignments of 99 ‘core antiviral’ genes 
(top). Stacked barplots represent reference and query cell compositions across 
14 equispaced pseudotime points, colored by post-stimulation sampling time; 
boxed segments represent mismatches; black lines represent matches. Pairwise 
time point matrix between reference and query (bottom). Color represents 
total gene count showing a match between corresponding time points. White 
line represents the average alignment path. c, Gene expression of three 
representative core antiviral genes (IRF7, STAT2 and IFIT1) in query (blue) and 
reference (green). Interpolated log1p-normalized (per-cell total raw transcript 
counts normalized to 10,000 and log1p-transformed) expression (y axis) against 
pseudotime (x axis) (left). Bold lines represent mean expression trends and 
faded data points indicate 50 random samples from the estimated expression 
distribution at each time point. Black dashed lines represent time point matches 
(captured by the alignment string below). Actual log1p-normalized expression  

(y axis) against pseudotime (x axis) (right). Each point represents a cell. Red 
circles highlight early cells (‘precocious expressers’) with high expression.  
d, Same plots as b for 89 ‘peaked inflammatory’ genes, clustered following their 
alignments (Extended Data Fig. 2). Dashed, colored lines represent example 
cluster-specific alignment paths. e, Same plots as c for representative genes 
(CXCL2, PLK2, CXCL1 and CD44) from each cluster shown in d. f, Alignment 
similarity (y axis) against log2 fold change of mean expression (x axis) for 
peaked inflammatory genes (middle). Color represents alignment similarity. 
Surrounding plots show interpolated log1p-normalized expression (y axis) 
against pseudotime (x axis) on the left and the gene expression violin plot on the 
right, for four selected genes (SGMS2, CCRL2, TNF and C5AR1). Green and blue 
violin plots include n = 179 PAM-stimulated and n = 290 LPS-stimulated cells, 
respectively. Violin shows expression distribution across cells as a kernel density 
estimation. The box inside each violin shows the interquartile range (25–75% 
quantiles, with a point indicating median). The illustration in a was created 
using BioRender (https://biorender.com). All interpolations and statistics were 
generated using our G2G framework.
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methods showed expected trends, falling within the expected ranges 
for larger perturbation sizes. Notably, TrAGEDyNULL outperformed 
TrAGEDyMINIMUM in both scenarios. TrAGEDyNULL also showed higher 
accuracy for perturbation sizes <6%. Overall, G2G and TrAGEDyNULL 
closely performed with better match detection than TrAGEDyMINIMUM; 
however, G2G showed relatively less variability in results overall.

Experiment 3. Examining two simulated datasets with no shared 
process (referred to as negative control, tested by TrAGEDy17), G2G 
generated an aggregate alignment of 100% mismatch as expected, 
whereas TrAGEDy17 falsely inferred match segments (Fig. 3h); similar 
results were observed for three genes with completely mismatched 
trajectories.

In conclusion, G2G outperformed existing methods by accurately 
aligning and clustering genes with different alignment patterns.

G2G captures matches and mismatches at gene-level 
resolution
To further demonstrate our framework’s features, we performed G2G 
alignment on the time-course dataset20 tested by CellAlign7 (Fig. 4a). 
This involved murine bone-marrow-derived dendritic cells treated with 
PAM3CSK (PAM) or lipopolysaccharide (LPS) to simulate responses to 
different pathogens.

G2G’s ability to capture mismatches is revealed when aligning 
genes from the ‘core antiviral module’ (Extended Data Fig. 4a). Cel-
lAlign7 demonstrated a ‘lag’ in gene expression after PAM stimulation 
compared to LPS7, which was also captured by G2G aggregate align-
ment (Fig. 4b). In addition, G2G identified mismatches in the early and 
late pseudotime points. Clustering alignments revealed low diversity, 
implying that all genes generally follow the average pattern (Extended 
Data Fig. 4b). At early pseudotime points, the gene expression was 
consistently low in the PAM condition, whereas some LPS-stimulated 
cells were already showing elevated expression (for example IRF7, 
STAT2 and IF1T1; Fig. 4c). These have also been noticed and described 
as ‘precocious expressers’ in the original paper20. The mismatch in 
late LPS pseudotime points was caused by the peaked expression, 
whereas the expression of PAM-stimulated cells was still on the rise, 
not yet reaching a peak.

For genes in the ‘peaked inflammatory module’, Fig. 4d shows their 
G2G aggregate alignment. Clustering of genes revealed cluster-specific 
average alignments that differed from the main average alignment 
(Fig. 4d and Extended Data Fig. 4c–e). Representative genes from dif-
ferent clusters (Fig. 4e) displayed subtle differences in the length and 
position of matches. Using G2G alignment similarity statistics (Fig. 4f), 
we identified SGMS2 as the most similar gene (with low log fold change) 
and CCRL2 and C5AR1 as highly dissimilar genes (with high log fold 
change) between PAM- and LPS-stimulated trajectories. CCRL2 align-
ment showed a late convergence. We also note TNF as highly dissimilar 

despite its negligible log fold change, undetectable by a standard DE 
test (for example Wilcoxon rank-sum P = 0.2), hence highlighting the 
importance of trajectory alignment.

The above results again showcase how G2G captures mismatched 
regions between scRNA-seq trajectories.

G2G finds early/late differences in disease epithelial cells
Next, we compared two cell differentiation trajectories from healthy 
lung versus diseased lung in idiopathic pulmonary fibrosis (IPF). IPF 
is an incurable and irreversible disease characterized by deposition 
of extracellular matrix by myofibroblasts, scarring and progressive 
loss of lung function, with an estimated survival rate of 3–5 years after 
diagnosis30. Using the Adams et al. (2020) dataset21, we investigated 
the differentiation of alveolar type 2 (AT2) cells into alveolar type 1 
(AT1) cells in the healthy lung versus AT2 differentiation into aberrant 
basaloid cells (ABCs) in the IPF lung31,32 (Fig. 5a). ABCs have only recently 
been characterized in single-cell studies of patients with IPF21,31,33,34; 
Their origin and role in IPF pathogenesis is still unclear.

We inferred trajectories for healthy and IPF data using diffusion 
pseudotime35 (Supplementary Fig. 2) and aligned them using G2G 
across 994 highly variable genes (under 13 interpolation time points). 
The alignment distribution (Extended Data Fig. 5a) shows ~62% mean 
similarity. As expected, their aggregate alignment showed mismatches 
only at late pseudotime points (Fig. 5b), given that both healthy and IPF 
lung epithelial differentiation start from AT2 cells, but give rise to AT1 
in healthy versus ABCs in IPF. Moreover, examining the ABC-specific 
marker genes (Fig. 5c and Supplementary Fig. 3), we observe a diverg-
ing pattern as reported by other studies21,31.

We performed gene set over-representation analysis on the top 
mismatched genes (alignment similarity ≤40%) and found that epithe-
lial mesenchymal transition (EMT) was the most significantly enriched 
pathway (Fig. 5d and Supplementary Table 3). While most EMT genes 
show mismatches only at later stages, consistent with dysregulated 
EMT being implicated in ABC development in IPF21,31–34, some EMT 
genes already show differences at early/mid differentiation stages (for 
example NNMT, CXCL1 and CXCL8). These could be potential therapeu-
tic targets to prevent differentiation into the pathological ABC state.

Downstream clustering revealed additional alignment pat-
terns (Extended Data Fig. 5b,c). For example, cluster 3 represents 
almost-completely mismatched genes, including upregulation of 
CAMK1D (Fig. 5e), a known target of TGF-β1 (ref. 36), a key regulator of 
IPF development37. Overall, G2G captured the expected alignments 
and some new early/mid mismatches between the healthy and IPF 
trajectories.

G2G reveals differences of T cell development in vitro
We next employed G2G to compare in vitro and in vivo human T cell 
development. The thymus is the key site for T cell development, where 

Fig. 5 | Genes2Genes compares cell differentiation trajectories between 
healthy lung and disease lung in idiopathic pulmonary fibrosis.  
a, Schematic of the healthy and IPF cell differentiation trajectories of focus, that 
is, differentiation of alveolar type 2 (AT2) cells into alveolar type 1 (AT1) cells in 
the healthy lung (reference) versus ABCs in the IPF lung (query). b, Aggregate 
alignment over the alignments of all highly variable genes (HVGs) (top). Stacked 
barplots represent reference and query cell-type compositions across 13 
equispaced pseudotime points; boxed segments represent mismatches; black 
lines represent matches. The pairwise time point matrix between healthy and 
IPF pseudotime (bottom). Color represents total gene count showing a match 
between corresponding healthy and IPF time points. White line represents 
the average alignment path. c, Aggregate alignment over the alignments of 88 
ABC marker genes (Supplementary Fig. 3) plotted as in b, with the aggregate 
alignment schematic on top, and the pairwise time point matrix in the middle. 
Gene expression plots for three example ABC marker genes (KRT17, MMP7 and 
FN1) between IPF (blue) and healthy (green) data along pseudotime, plotting 

interpolated log1p-normalized (per-cell total raw transcript counts normalized 
to 10,000 and log1p-transformed) expression (y axis) against pseudotime  
(x axis) (bottom). Bold lines represent mean expression trends; faded data points 
are 50 random samples from the estimated expression distribution at each time 
point. Black dashed lines represent matches between time points. d, Aggregate 
alignment path (white) for all EMT pathway genes, plotted on the pairwise time 
point matrix between healthy and IPF as in b, with the schematic on the right 
(top right). Heatmap of the smoothened (interpolated) and z-normalized mean 
log1p gene expression of genes in the EMT pathway along pseudotime (bottom 
right). e, Gene expression of CAMK1D between IPF (blue) and healthy (green) 
along pseudotime. Interpolated log1p-normalized expression (y axis) against 
pseudotime (x axis) as in c (top). Actual log1p-normalized gene expression versus 
pseudotime plots (bottom). The illustration in a was created using BioRender 
(https://biorender.com). All interpolations and statistics were generated using 
our G2G framework.
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lymphoid progenitors differentiate through stages of double-negative 
(DN) and double-positive T cells to acquire T cell receptors (TCRs) 
(Fig. 6a top and Extended Data Fig. 6). If the TCR recognizes self-antigen 
presented on the major histocompatibility complex during the 

process of positive selection, the developing T cells further differen-
tiate through abT(entry) cells and finally mature into single-positive 
(SP) T cells. There are different subsets of SP T cells, including CD4+ 
T, CD8+ T and regulatory T (Treg) cells, as well as the newly recognized 
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unconventional type 1 and type 3 innate and CD8AA T cells38,39. To 
investigate human T cell development in a model system in vitro, we 
differentiated induced pluripotent stem (iPS) cells into mature T cells 
using artificial thymic organoids (ATOs)40. We previously collected 
differentiated cells from week 3, 5 and 7, and reported that the mature 
T cells in ATOs were most similar to in vivo type 1 innate T cells39. To 
further explore, we performed scRNA-seq analysis of cells collected 
at regular intervals throughout differentiation, including the early 
time points (Fig. 6a bottom and Extended Data Fig. 6a). Cell types were 
annotated using CellTypist41 and marker gene analysis (Extended Data 
Figs. 6b–8). The ATOs capture differentiation from stem cells, through 
mesodermal progenitors and endothelium to the hematopoietic line-
age and then further to the T cell lineage.

We integrated the ATO cells with the relevant in vivo cells from 
our developing human immune atlas39 (hereafter, ‘pan fetal refer-
ence’) into a common latent embedding using scVI42, and estimated 
their pseudotime (Extended Data Fig. 6c–e). The ATO pseudotime was 
estimated using a Gaussian process latent variable model (GPLVM)43 
with sampling times as priors. The pan fetal reference cells’ pseudo-
time was computed similarly by estimating their time priors from the 
nearby ATO cells.

G2G alignment between the ATO and in vivo trajectories was per-
formed (under 14 interpolation time points) using all transcription fac-
tor (TF) genes44 (1,371 TFs), as many TFs function as ‘master regulators’ 
of cell states and have been used to induce cell differentiation. Their 
aggregate alignment showed mismatches at the beginning and at the 
end (Fig. 6b), with ~66% mean alignment similarity in their distribution 
(Extended Data Fig. 9a). Independently, TrAGEDy17 high-dimensional 
alignment also verified this strong mismatch in early and late stages 
between in vitro and in vivo T cell differentiation.

Clustering alignments finds interesting groups of genes. TF align-
ments were hierarchically clustered and explored at several resolutions 
(Extended Data Fig. 9b,c). At low resolution (Extended Data Fig. 9c), 
cluster 2 includes pluripotent TFs showing insertions at early pseu-
dotime (Supplementary Table 5). Well-known stemness TFs POU5F1, 
NANOG and TBX3 (ref. 45) were present in early ATO development, but 
missing from the reference. This is expected for pluripotent stem cell 
TFs (Fig. 6c), as in vitro differentiation started from iPS cells, whereas 
the earliest in vivo cells were hematopoietic stem cells (HSCs). Among 
them, HHEX46–48 demonstrated another pattern: a match between 
in vivo and in vitro HSCs and DN T cells as expected, although with 
lower maximum HHEX expression in in vitro versus in vivo cells (Fig. 6c). 
Notably, clustering also revealed TF mismatches only at the middle 
time points (for example POU6F1, SOX18 and CSRNP3 in cluster 0 at 
low resolution and BATF2 in cluster 13 at high resolution). This might 
represent a missing cell state, for example, BATF2 is expressed sparsely 
in endothelial cells, which are present only in the in vitro system. On the 
other hand, LEF1 (necessary for early stages of thymocyte maturation49) 

stands out as a single cluster showing almost 100% matching between 
the trajectories, whereas two other clusters include almost 100% mis-
matching TFs, for example, GATA6, SALL4, HOXB6, NACC2 and PRDM6. 
See Supplementary Fig. 4 for expression and alignment plots of all 
aforementioned genes.

TNF as a potential target for in vitro optimization. Gene set over- 
representation among the most mismatched genes (alignment similar-
ity ≤40%; Supplementary Table 4) revealed genes associated with TNF 
signaling via the nuclear factor (NF)-κB pathway. Many of the TFs in 
this pathway (for example FOSB, JUNB and NR4A2) showed an increas-
ing trend at the last stage of in vivo T cell development, whereas this 
increase is missing in the in vitro T cells (Fig. 6d). We further validated 
this by showing that these genes have higher expression in the thymic 
medulla (where mature T cells reside) than in the cortex (where T cell 
progenitors reside), to ensure that this is not due to handling artifacts 
of tissue digestion (Supplementary Note). There are exceptions to this 
overall pattern, for example, KLF2, whose expression is higher in vitro 
than in vivo (Fig. 6d), possibly due to each gene being regulated by more 
than one signaling pathway. Alignment of all 196 genes in the TNF path-
way also confirms a significant mismatch in the last stage (Extended 
Data Fig. 10a), suggesting this pathway as a potential target for further 
in vitro optimization. Restricting the analysis to T cell lineages, DN 
stage onwards (Extended Data Fig. 10b, left), TNF signaling via NF-κB 
pathway remained the most enriched gene set among the mismatched 
TFs (Supplementary Table 6). We remark that although it is possible to 
recover these differences via direct DE analysis between cell subsets, for 
example, end products of ATOs versus in vivo T cells, a key advantage 
of trajectory alignment is the ability to systematically identify the time 
point where the mismatch occurred during differentiation. This in turn 
informs us when to introduce TNF in in vitro optimizations.

In vitro SP T versus in vivo CD8+ T lineages. The above alignments 
were between in vivo type 1 innate T cells and the relevant precursors, 
as we previously found that the in vitro mature T cells were closest to 
the in vivo type 1 innate T cells39; however, in vitro cell differentiation 
to conventional CD8+ T cells might also provide promising routes for 
cell therapies. We therefore performed another G2G alignment using 
in vivo conventional CD8+ T cells and the relevant T lineage precursors 
(DN T cells onwards). Differences in the two alignment results sug-
gest that potential targets such as SOX4, FOXP1 and ARID5B may tune 
cells toward in vivo CD8+ T cells (Supplementary Note, Extended Data 
Fig. 10b,c and Supplementary Table 7).

Preliminary experiment targeting TNF signaling. G2G alignments 
revealed potential targets for further optimization of in vitro T cell 
differentiation (Fig. 6e). We experimentally validated the impact of 
TNF signaling by adding TNF into the ATO medium between weeks 
6–7 (Fig. 6f), and comparing SP T cells of our ATOs (wild-type) and the 

Fig. 6 | Genes2Genes aligns in vivo, in vitro human T cell development. 
a, Schematic illustration of T cell development in the human thymus. 
b, Aggregate alignment over the alignments of 1,371 TFs between in vitro 
organoid (ATOs) and in vivo39 human T cell developmental trajectories, shown in 
the pairwise time point matrix between organoid and reference. Color represents 
total gene count showing a match between corresponding time points. White 
lines represent the average alignment path. Stacked barplots represent reference 
(top) and query (left) cell-type compositions across 14 equispaced pseudotime 
points. c, Aggregate alignment over all TFs in the pluripotency signaling 
pathway, plotted on the pairwise time point matrix (top left) as in b; schematic 
of this mapping between reference and organoid cell-type compositions across 
pseudotime; boxed segment represents the mismatched ATO pluripotency stage; 
black lines represent matches. Interpolated log1p-normalized (per-cell total raw 
transcript counts normalized to 10,000 and log1p-transformed) expression  
(y axis) against pseudotime (x axis) for selected genes (bottom left). Heatmap of 

the smoothened (interpolated) and z-normalized mean gene expression along 
pseudotime (bottom right). d, Same plots as c for all TFs in the TNF signaling 
via NF-κB pathway. The boxed segment in the right-top plot represents the 
mismatched last stage in vivo T cell maturation. e, Schematic illustration of 
potential targets for further optimization of in vitro T cell differentiation toward 
either type 1 innate T cells or conventional CD8+ T cells. f, Schematic illustration 
of the comparison between SP T cells from the wild-type ATOs and the TNF-
treated ATOs against in vivo type 1 innate T cells. SP T cells from ATOs after TNF 
treatment show more maturity toward in vivo type 1 innate T cells. g, Heatmap 
of mean log1p-normalized gene expression of TFs within the TNF signaling via 
NF-κB pathway (same gene list as in d) in reference (in vivo type 1 innate T cells), 
SP T cells from wild-type ATOs and SP T cells from TNF-treated ATOs (ATOTNF). 
Illustrations in a,e,f were created using BioRender (https://biorender.com). All 
interpolations and statistics were generated using our G2G framework.
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TNF-treated ATOs (ATOTNF) to the type 1 innate T cells in the pan fetal 
reference. We observed that, in the scVI42 latent space of all in vivo 
and in vitro cells, the Euclidean distance between the mean vectors 
of in vitro SP T cells and the in vivo type 1 innate T cells decreased by 
~5% after TNF treatment. Further examining the effect, TFs and all 
genes within the TNF signaling pathway (Fig. 6g and Extended Data 
Fig. 10d) in T cells showed higher expression in ATOTNF compared to 
ATOs, as expected. The mean distance of gene expression distribu-
tions also dropped for all genes and TFs that were significantly distant 
between ATO T cells and in vivo type 1 innate T cells (Methods and 
Supplementary Note). We note the distance change in several known 
SP T cell maturation markers (IL7R, KLF2, FOXO1, S1PR1 and SELL)50,51 
(Extended Data Fig. 10e,f and Supplementary Fig. 5). IL7R has shown 
to initiate in mature SP thymocytes, with its expression dependent on 
NF-κB signaling52–55. The distance of in vitro and in vivo IL7R expression 
significantly dropped after TNF treatment with an increased expression 
as expected from mature T cells. KLF2 was also further upregulated. 
The rest of the markers maintained expression. Overall, these results 
suggest more mature SP T cells in ATOTNF.

It is worth noting that another in vitro T cell differentiation pro-
tocol added TNF throughout differentiation to improve T cell pro-
duction efficiency56,57; however, G2G identified that the TNF pathway 
mismatches at late T cell differentiation. Therefore, targeting this 
pathway, we added TNF in the last week of differentiation to improve 
T cell maturation, which enabled us to successfully push in vitro T cells 
to better match the in vivo T cells (Fig. 6f). Our results suggest that this 
is a potential direction to refine the ATO protocol toward mature type 1 
innate T cells, subject to future functional validation studies.

Discussion
Trajectory alignment can capture transcriptomic similarities and dif-
ferences of temporal dynamics between cell populations. We devel-
oped G2G, a framework to align single-cell pseudotime trajectories 
at single-gene resolution, and demonstrated its utility and versatility 
in single-cell studies (for instance, discerning differential genes or 
pathways that drive pathogenicity in diseases or potential targets for 
refining organoid protocols toward better in vivo recapitulation). G2G 
outperforms existing methods through more descriptive and accurate 
alignments, and our work provides proof of concept of the power of 
gene-level alignment.

Given cell-by-gene matrices and pseudotime estimates of a 
reference and query, G2G generates an alignment for each gene by 
unifying DTW and gap modeling. The distribution of alignments can 
inform gene clusters with broadly similar alignment patterns and 
their average alignments. As such aggregated results depend on the 
genes we choose to align, we recommend selecting genes that are as 
informative as possible (for example, lineage-relevant driver genes 
or regulons). For instance, we can align the significantly upregulated 
and downregulated genes in the reference to investigate whether the 
query follows the same dynamics. Aligning TFs can inform differential 
regulation. When aligning all or highly variable genes, we can inspect 
gene clusters (paired with over-representation analysis) to extract 
biologically meaningful groups, for example, revealing biological or 
signaling pathways that drive mismatches at different times. These 
can be a basis for protocol intervention when comparing in vivo or 
in vitro trajectories and for mechanistic molecular interpretation of 
differences between any trajectories.

An important feature of G2G is gene-specific alignment. Most 
existing approaches produce a single alignment by computing 
high-dimensional Euclidean distances over all genes. Such metrics 
suffer from ‘the curse of dimensionality’ by losing accuracy as the 
number of genes increases58. A single alignment also masks gene align-
ment heterogeneity. Alpert et al.7 recommend aligning the largest gene 
set with significant DE over time, to avoid noise from stably expressed 
genes. Our method goes further and fully resolves all gene groups with 

individual matching and mismatching patterns at different stages  
of time.

The reliability of trajectory alignment depends on the quality of 
inputs. We recommend selecting a pseudotime inference method2 
suitable for the datasets at hand2. One could run G2G with estimates 
from different methods and evaluate how robust the results are. 
Future work is also needed to calibrate trajectory input. For instance, 
an adaptive Gaussian kernel interpolation may optimize the meth-
od’s sensitivity to the variance of expression in nearby cells. We also 
recommend inspecting whether the cell density along pseudotime 
represents the entire dynamic process. When there are missing 
(unobserved) cells representing sudden changes, the assumption 
of a smooth trajectory breaks and limits G2G from generating accu-
rate alignments, as the data estimation at each interpolation point is 
controlled by the observed cells in its neighborhood. Furthermore, 
G2G only compares two linear trajectories. We are aware of existing 
DTW approaches for branched trajectory alignment10. Output pairs 
of correspondences from them could undergo G2G alignment to 
capture gene-level mismatches.

In summary, G2G enables deeper understanding of the diver-
sity of gene alignments between single-cell datasets. It is available 
as an open-source Python package at https://github.com/Teichlab/
Genes2Genes. We demonstrated that regenerative medicine can spe-
cifically benefit from trajectory comparisons by extracting cues to 
guide refinement of in vitro cell engineering. We envision that G2G will 
be useful to the community for exploring other scenarios such as cell 
activation or stimulation responses in control and disease, generating 
insights to advance our understanding of cell development and func-
tion in health and disease.
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Methods
Genes2Genes: a new alignment framework for single-cell 
trajectories
DP4 remains central to many sequence alignment algorithms.

G2G performs gene-level pseudotime trajectory alignment 
between a single-cell reference and query, by running DP align-
ment independently for all genes of interest. It aims to generate an 
optimal sequence of matched and mismatched time points for each 
gene. There are five different alignment states possible between 
two reference and query time points (Fig. 1b). For each time point in 
any gene trajectory, there is a respective expression distribution as 
observed via scRNA-seq measurements. G2G evaluates the distances 
of these distributions in reference and query to infer an optimal gene 
alignment.

Pairwise time series alignment for trajectory  
comparison
Trajectory is a continuous path of change through some feature space, 
along an axis of progression (such as time)59. In single-cell transcriptom-
ics, this feature space is often defined by genes. A trajectory through a 
high-dimensional gene space describes the state of a cell as a function 
of time. The pseudotime of cells represents a discretization of their 
cell-state trajectory. Their genes form a multivariate time series of 
expression, with each gene as univariate. In this work, we consider 
pairwise alignment of univariate time series, which enables gene-level 
trajectory alignment.

Given two discrete time series (sequences), reference R and query 
Q of length (a finite number of time points) |R| and |Q|, their pairwise 
alignment describes an optimal sequential mapping between their 
time points. As an optimization problem, this has two key properties: 
(1) an optimal substructure; and (2) overlapping set of subproblems, 
which make it solvable by DP. Property (1) means, the optimal align-
ment of any two prefixes R1‥j and Q1‥i depends on the optimality of 
three subalignments: (i) R1‥j-1 and Q1‥i-1; (ii) R1‥j-1 and Q1‥i; and (iii) R1‥j 
and Q1‥i-1. Property (2) means, there exists prefix alignments that are 
overlapping. DP begins optimizing prefix alignment, starting from 
null (Φ) sequences until it completes aligning the entire two 
sequences. This process computes overlapping subproblems 
only once and reuses them through a memoization (history) matrix 
Hist . In standard DP alignment, Hist(i, j) stores the optimal alignment 
cost of the two prefixes: R1∶j and Q1∶i, by optimizing an objective func-
tion that quantifies the alignment through a set of recurrence rela-
tions. Once Hist  is computed, the optimal alignment can be retrieved 
by backtracking, starting from Hist(|Q| + 1, |R| + 1)  until reaching 
Hist(0,0).

Preprocessing a trajectory time series by distributional 
interpolation
Interpolation of time series is necessary to ensure smoothly changing 
and uniformly distributed data (at least approximately). This is because 
non-interpolated data cannot guarantee a reliable alignment7,13. We 
interpolate all reference/query gene expression trajectories before 
alignment, by extending CellAlign’s7 mean-based interpolation method 
to distributional interpolation.

Given pseudotime series t  of (log1p-normalized) expression in 
gene gj of a single-cell dataset, we first transform the pseudotime axis 
to [0,1] range using min–max normalization.

Then, m equispaced artificial (interpolation) time points are 
defined, and for each interpolation time point t′, we estimate a Gaussian 
distribution (of mean gj(t′)mean  and s.d. gj(t′)s.d.) using the Gaussian 
kernel-based weighted approach. For each cell  annotated with pseu-
dotime ti, a weight is computed with respect to each t′ as:

wi = exp (−
(ti − t′)

2

window_size2 )
,

where window_size = 0.1 . Below equations estimate gj(t′)mean  and  
gj(t′)s.d.:

gj(t′)mean =
1

Σwi

n
∑
i=1
wigj(ti)

gj(t′)s.d. = ct′
√√√
√
n
∑n
i=1 wi[gj_mean − gj(ti)]

2

(n − 1)Σwi

where gj_mean =
∑n

i=1gj(ti)
n

, n is the total number of cells, and ct′ is the 
expected weighted cell density at t′, that is, ct′ =

∑n
i=1wi
n

, used to account 
for cell abundance when estimating variance (otherwise a very few cells 
may give very high variance). Next, we generated 50 random points 
from Gaussian distribution N(gj(t′)mean, gj(t′)s.d.) for each t′, representing 
the interpolated distribution of single-cell gene expression. Note that 
we used a predefined m for both reference and query. The interpolation 
has O(nm) time complexity due to taking weighted contribution from 
all cells at each t′. For efficiency, one could subsample datasets and/or 
restrict the contributing cells to the nearest neighborhood.

Extreme cases. When the smooth trajectory assumption breaks (for 
example, pluripotent genes suddenly dropping to zero mid-way after 
highly expressed in early development), the interpolated variance 
might not reflect the true observation. Also, when a gene is (almost) 
zero-expressed, there is no distribution to model. To handle such 
extreme cases when interpolating reference and query gene trajecto-
ries, G2G applies the below steps:

•	 For either trajectory, check for regions (adjacent interpolation 
points) showing abrupt zero-expression (<3 cells expressed) in 
considerable lengths (exceeding 0.2), by sliding-window-scan-
ning; apply a common σ  (10% of the minimum σ  estimated across 
all interpolation points) for those regions to have a very low σ  with 
zero mean.

•	 If either gene is zero-expressed (<3 cells expressed) across pseu-
dotime, apply 10% of the minimum σ  estimated across all interpola-
tion points of the other trajectory as the σ  for the extreme-case 
trajectory and vice versa.

A new DP algorithm for gene-level trajectory alignment
Our DP algorithm is inspired by biological sequence alignment discussed 
in the related literature22–24. It generates an alignment between R and Q 
expression time series of a specified gene by adapting Gotoh’s algorithm16 
and DTW5 to accommodate five alignment states (Fig. 1b), that is, one-to- 
one match (M), one-to-many match (V), many-to-one match (W), insertion 
(I) and deletion (D), between a pair of R and Q time points. The five-state 
space is denoted by Ω = [M, V, W, D, I]. V and W represent warps.

DTW5 is extensively used to align time series. Sankoff and Kruskal 
(1983)13 previously discussed how to capture both warps and indels 
from a single algorithm and provided DP recurrences for evaluating 
all states in Ω to assign an optimal state for each pair of R and Q time 
points. Extending this further, we implemented Gotoh’s algorithm (of 
O(|R||Q|) time complexity) to generate an optimal five-state alignment 
string for R and Q using:

•	 a Bayesian information-theoretic distance measure between two 
expression distributions under the minimum message length 
inference criterion13,26.

•	 a five-state machine that models state transitions along an 
alignment.

The DP scoring scheme evaluates every pair of R time point j  (Rj) 
and Q time point  (Qi) by computing two costs: (1) the cost of matching 
them (denoted by Costmatch(i, j) ) based on their interpolated gene 
expression distributions, and (2) the cost of assigning an alignment 
state x ∈ Ω for them.
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The DP scoring scheme
The cost of match between Rj and Qi. Rj and Qi are expected to match 
if they have similar expression distributions. To score their match 
likelihood, we define a cost (distance measure) between the two expres-
sion distributions of Rj and Qi, modeled as two Gaussians. We compute 
this over the interpolated single-cell expression data at Rj (denoted by 
R( j ) under N(μR( j),σR( j))) and Qi (denoted by Q(i) under N(μQ(i),σQ(i))) 
with respective mean (μ) and s.d. (σ ) statistics. Accordingly, if 
DR( j) = {dk}

|R( j)|
k=1  and DQ(i) = {dk}

|Q(i)|
k=1  are their expression data vectors, 

then: dk ∼ N(μR( j),σR( j)) ∀ dk ∈ DR( j) and dk ∼ N(μQ(i),σQ(i)) ∀ dk ∈ DQ(i).
Hereafter, we denote N(μR( j),σR( j)) by NR( j) and N(μQ(i),σQ(i)) by NQ(i).
We implement the cost function, Costmatch(i, j), to consider both 

data (DR( j) and DQ(i)) and models (NR( j) and NQ(i)) when computing the 
distance between R( j) and Q(i), using the MML criterion26,27. See Fig. 2 
(top left) and Supplementary Fig. 1a for illustrations of our MML 
framework.

Primer on MML. MML is an inductive inference paradigm for model 
comparison and selection, grounded on Bayesian statistics and infor-
mation theory. Given a hypothesis (model) H  and data D, it lays an 
imaginary message transmission from a sender who jointly encodes H  
and D, for lossless decoding at a recipient’s side. Bayes theorem defines 
their joint probability as:

Pr(H,D) = Pr(H)Pr(D|H) = Pr(D)Pr(H|D)

Separately, Shannon information28 ( I) defines the optimal encod-
ing length of an event E  with probability Pr(E) as:

I(E) = −loge(Pr(E))

measured in nits. Applying this to Bayes theorem describes the infor-
mation needed to encode H  and D jointly as:

I(H,D) = I(H) + I(D|H) (1)

This gives a two-part total encoding length for H  and D, where I(H) 
quantifies the information of H, and I(D|H) quantifies the information 
of D using H. When two hypotheses, H1 and H2, describe D, MML enables 
selecting the best hypothesis with model complexity versus model-fit 
tradeoff, by evaluating a compression statistic ∆ = I(H1,D) − I(H2,D), 
which gives the log odds posterior ratio between them.

∆ = log (Pr(H2,D)Pr(H1,D)
) = log (Pr(D)Pr(H2|D)Pr(D)Pr(H1|D)

) = log (Pr(H2|D)Pr(H1|D)
) (2)

∆>0 implies that H2 is e∆ times more likely than H1 and vice versa.

Casting Costmatch (i,j) under MML. Given the data D (DR( j) and DQ(i)) and 
Gaussian models (NR( j) and NQ(i)), we formulate two hypotheses:

•	 Hypothesis A (Rj and Qi match): explains D with a single, 
representative model N( μ∗,σ∗) denoted by N∗ (= either NR( j) or 
NQ(i)),

•	 Hypothesis Φ (Rj and Qi mismatch): explains DR( j) with NR( j) and 
DQ(i) with NQ(i), independently,

and compute, I(A,D) and I(Φ,D) according to equation (1):

I(A,D) = I(A) + I(D|A) (3)

I(Φ,D) = I(Φ) + I(D|Φ) (4)

where, A = [N∗] and Φ = [NR( j),NQ(i)]. Accordingly, equation (3) becomes:

I(A,D) = I(N∗) + I(D|N∗) = I( μ∗,σ∗) + I(D|μ∗,σ∗)

Similarly, equation (4) becomes:

I(Φ,D) = I (NR( j),NQ(i)) + I (D||NR( j),NQ(i))

= I (NR( j)) + I (NQ(i)) + I (D||NR( j),NQ(i))

= I ( μR( j),σR( j)) + I ( μQ(i),σQ(i))

+I (DR( j)||μR( j),σR( j)) + I (DQ(i)||μQ(i),σQ(i))

The next section describes how equations (3) and (4) terms are 
calculated. We normalize I(Φ,D)  and I(A,D)  to compute per-datum 
information (entropy):

I(A,D)entropy =
I(A,D)

|DR( j)| + |DQ(i)|

I(Φ,D)entropy =
I(Φ,D)

|DR( j)| + |DQ(i)|

Note that the I(A,D)entropy measure is made symmetric as:

I(A,D)entropy =
I(NR( j),D)entropy + I(NQ(i),D)entropy

2 nits per datum

We then define the compression statistic ∆ as our Costmatch(i, j):

∆ = I(A,D)entropy − I(Φ,D)entropy

When R( j)  and Q(i)  are significantly dissimilar, I(A,D)entropy  
> I(Φ,D)entropy. Thus, Costmatch(i, j) increases when distributions diverge 
(Extended Data Fig. 1b and Supplementary Fig. 1b,c).

Computing the Shannon Information of any Gaussian model and data. 
Costmatch(i, j)  computation uses MML Wallace–Freeman approxima-
tion26,28 defined for Gaussian distributions27,60. As in equation (1), for 
any dataset D and hypothesis H  describing D = {xk}

X
k=1 under N(μ,σ) with 

parameters θ⃗ = (μ,σ), the information of H  and D is:

I(H,D) = I(θ⃗,D) = I(θ⃗) + I(D|θ⃗)

expanding to:

I(θ⃗,D) = d
2 log(κd) − log[h(θ⃗)] +

1
2 log(det[Fisher(θ⃗)]) + L(θ⃗) +

d
2 ,

where d  is the number of free parameters (d = 2 for a Gaussian) and κd  

is the Conway lattice constant61 (κd is 5
36√3

 for d = 2); h(θ⃗) is the prior over 

θ⃗. μ and log(σ) are defined with uniform priors over predefined ranges 
of length Rμ and length Rσ, respectively:

h(θ⃗) = h(μ) h(σ) = ( 1Rμ
) ( 1
σRσ

)

⇒ I[h(θ⃗)] = log(σ) + log(RμRσ)

We use Rμ = 15.0 and Rσ= 3.0 as reasonable for log-normalized 
expression (for example, across 20,240 genes, we observe ~8.1 maxi-
mum expression and ~1.7 maximum σ  in the pan fetal reference).

L(θ⃗) is the negative log likelihood:

L(θ⃗) = X log(σ) + X
2 log(2π) +

1
2σ2

X
∑
i=1

(xi − μ)
2 −

X
∑
i=1
log(ϵ)

where, ϵ is the precision of datum measurement (taken as ϵ = 0.001). 
det[Fisher(θ⃗)]  is the determinant of the expected Fisher matrix (the 
matrix of the expected second derivatives of the negative log-likelihood 
function), which has the closed form 2X

2

σ4
.
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The cost of alignment state assignment for RRRjjj and QQQiii. The DP scoring 
scheme also involves a cost of assigning an alignment state x ∈ Ω = [M, 
W, V, D, I] for Rj and Qi. This is computed as the Shannon information28 
required to encode state x  given previous state y assigned for the 
preceding time points, I(x| y) = −loge(Pr(x| y)) . We define a five-state 
machine (middle left of Fig. 2) to explain these conditional probabilities 
(also called state transitions), by extending the three-state machine22,23 
of [M,I,D] to accommodate [W, V]warp states (Fig. 1b). We enforce 
symmetry while treating <I and D> and <W and V> equivalently and 
prohibiting transitions, I → W and D → V, as they imply a single M; how-
ever, we can allow D → W and I → V, as there can be a case of a warp match 
after an insertion or deletion. All outgoing transitions of each state 
sum up to a probability of 1. Overall, there are 23 state transitions in 
this machine, yet with only three free transition probability parameters 
[Pr(M | M), Pr(I | I) and Pr(M | I)  due to its symmetry and characteristics. 
These probabilities control the expected lengths of matches and mis-
matches (reflecting an affine gap scheme). In this work, we chose [Pr
(M | M) = 0.99, Pr(I | I) = 0.1, Pr(M | I) = 0.7  as the default in G2G based 
on a grid search that minimized the alignment inaccuracy rate in our 
simulated dataset 1. An interesting future direction would be to infer 
them using an added optimization layer on top of DP optimization.

Altogether, the G2G DP scoring scheme utilizes Costmatch(i, j ) and 
the five-state machine (with state-assignment costs evaluated as 
I (x|y) ∀ x, y ∈ Ω), to define DP recurrence relations.

DP recurrence relations. We define the {Histx}∀x∈Ω matrices correspond-
ing to the alignment states in Ω. Every Histx has (|Q| + 1 × |R| + 1) dimen-
sions, where the columns and rows correspond to R and Q time points, 
respectively. Histx(i, j) stores the optimal alignment cost of prefixes R1‥j 
and Q1‥i ending in state x. The DP recurrences to compute Histx(i, j) for 
i > 0, j > 0 are:

HistM (i, j) = min

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

Costmatch (i, j) +HistM (i − 1, j − 1) + I (M|M)

Costmatch (i, j) +HistW (i − 1, j − 1) + I (M|W)

Costmatch (i, j) +HistV (i − 1, j − 1) + I (M|V)

Costmatch (i, j) +HistD (i − 1, j − 1) + I (M|D)

Costmatch (i, j) +HistI (i − 1, j − 1) + I (M|I)

HistW (i, j) = min

⎧⎪⎪
⎨⎪⎪
⎩

Costmatch (i, j) +HistM (i, j − 1) + I (W|M)

Costmatch (i, j) +HistW (i, j − 1) + I (W|W)

Costmatch (i, j) +HistV (i, j − 1) + I (W|V)

Costmatch (i, j) +HistD (i, j − 1) + I (W|D)

HistV (i, j) = min

⎧⎪⎪
⎨⎪⎪
⎩

Costmatch (i, j) +HistM (i − 1, j) + I (V|M)

Costmatch (i, j) +HistW (i − 1, j) + I (V|W)

Costmatch (i, j) +HistV (i − 1, j) + I (V|V)

Costmatch (i, j) +HistI (i − 1, j) + I (V|I)

HistD (i, j) = min

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

HistM (i, j − 1) + I (D|M)

HistW (i, j − 1) + I (D|W)

HistV (i, j − 1) + I (D|V)

HistD (i, j − 1) + I (D|D)

HistI (i, j − 1) + I (D|I)

HistI (i, j) = min

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

HistM (i − 1, j) + I (I|M)

HistW (i − 1, j) + I (I|W)

HistV (i − 1, j) + I (I|V)

HistD (i − 1, j) + I (I|D)

HistI (i − 1, j) + I(I|I)

They are initialized as:

Histx(i, j)x∈{M,W,V} = {
0; i > 0, j > 0

∞; otherwise

HistI (i, j) = HistI (i − 1,0) + I (I|I)

HistD (i, j) = HistD (0, j − 1) + I (D|D)

Note that for the cases of <i = 1 and j = 1> (before the first state 
transition), either a uniform transition cost ( I (M) =  I (I) =  I (D) 
= −loge(1/3)) or a setting with lower cost for M can be assigned.

Once matrices are complete, G2G generates the optimal alignment 
Y∗  for R  and Q  as a five-state string Y∗str  (where character 
Y∗str [k] ∈ Ω ∀k ∈ ℤ[0,|Y∗|]), by backtracking from:

min

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

HistM (|Q|, |R|)

HistW (|Q|, |R|)

HistV (|Q|, |R|)

HistD (|Q|, |R|)

HistI (|Q|, |R|)

The optimal cost landscape matrix L can be constructed as:

L(i, j) = min∀x∈Ω {Histx(i, j)}

Y ∗ describes the set of R and Q time point pairs matched and the 
set of R and Q time points mismatched, sequentially. Let Tmatched be the 
set of matched time point pairs (i, j) in Y∗. The total alignment cost of 
Y∗ is the sum of the total match cost (Cmatch) and the total 
state-assignment cost (Cstate), where:

Cmatch(Y∗) = ∑
∀(i, j)∈Tmatched

Costmatch(i, j)

Cstate(Y∗) =
|Y∗ |
∑
k=1
I(Y∗[k]|Y∗[k − 1])

Overall, Y∗ = argmin ∀Y∈Y{Cmatch(Y) + Cstate(Y)}, where Y is the space 
of all possible five-state alignments.

Note that Costmatch(i, j) can be any cost function (for example, KL 
divergence) that can measure the distance between two expression 
distributions; however, MML distance enables defining complete 
descriptions for hypotheses, considering both model complexity and 
data fit, unlike KL divergence, which computes the expected log- 
likelihood ratio, disregarding model complexity.

Reporting alignment statistics over gene-level alignments
Distribution of alignment similarities. The distribution of ‘alignment 
similarity’ statistics (percentage of [M, V, W] in the five-state string gen-
erated by G2G for each gene) and their average ‘alignment similarity’ 
statistic across all genes, quantify the degree of concordance between 
the reference and query. The genes are ranked from the temporally 
most distant to most similar using those alignment similarities.

Aggregate alignment. G2G generates a single, cell-level (average) 
alignment across all genes (or any subset of genes) using their optimal 
alignment landscapes (L matrices). L(i, j) gives the optimal ending state 
of the prefixes, R1‥j and Q1‥i. Across all gene-specific L matrices, there 
is a five-state frequency distribution for each Rj and Qi. To generate an 
aggregate alignment, we begin traversal from L(|Q| + 1, |R| + 1)  and 
choose the most probable state x ∈ Ω for R|R| and Q|Q| as the most fre-
quent across all genes. Accordingly, we traverse to the next matrix cell 
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and repeat the same process until we reach L(0,0); for any L(i, j), if x = M, 
the next will be L(i − 1, j − 1) and if x  = D, the next will be L(i, j − 1) and so 
on. Finally, we have an aggregate five-state alignment string.

Clustering alignment patterns. We employ agglomerative hierarchi-
cal clustering under average linkage criterion (in sklearn v.1.2.2) to 
identify groups of genes that show similar alignment patterns, given 
a pairwise distance matrix between all alignment strings. The distance 
threshold parameter for the linkage controls where the cluster merge 
stops, allowing inspection of different clustering structures at different 
levels in the hierarchy.

Defining a distance measure for five-state alignment strings. Clustering 
alignments require defining a distance measure between two alignment 
paths. While the polygonal-area-based distance measure62 works for 
three-state alignments, it cannot distinguish warps from indels. The 
commonly used string distance measures are: Levenshtein distance 
and Hamming distance. Levenshtein distance is the minimum number 
of edits (substitutions, inserts and deletes) needed to transform one 
string to another. G2G computes pairwise Levenshtein distances 
between alignment strings (using leven v.1.0.4), normalized by the 
maximum length of the strings in comparison. Hamming distance is 
the minimum number of single-character substitutions needed to 
transform equal-length strings to one another. G2G computes pairwise 
Hamming distances using scipy.spatial.distance.cdist (in SciPy v.1.10.1), 
using the alignment strings encoded as equal-length binary strings (of 
size |R| + |Q|) (Supplementary Fig. 6a). Each alignment string is 
binary-encoded by traversing through its alignment path, recording 
for each R and Q, the match/mismatch state x  of their respective pseu-
dotime points (x ∈ [M, V, W] is encoded by 1; x ∈ [I, D] is encoded by 0). 
These R and Q binary strings are then concatenated. Note that both 
Levenshtein and Hamming distances are normalized to range [0,1].

Choosing the right string distance measure. We tested both Levenshtein 
and Hamming distances. In hierarchical clustering, the number of clus-
ters decreases as the distance threshold increases. Ideally, the bottom 
level of an optimal hierarchical clustering of strings shall represent each 
unique string in all strings (that is, the maximum number of clusters at 
the minimum distance threshold shall be equal to the number of unique 
strings). When clustering with Levenshtein distance, we observe this 
across all datasets. Hamming distance, however, does not guarantee 
such capture (Supplementary Fig. 6b). This agrees with the theoretical 
expectation that Levenshtein distance can distinguish all five individual 
states, whereas Hamming distance can only distinguish matches and 
mismatches. Therefore, we recommend Levenshtein distance for 
alignment clustering.

Choosing the distance threshold for hierarchical clustering. A common 
strategy is to empirically determine the distance threshold based on the 
mean silhouette coefficient63 (MSC) over all data samples. MSC ranges 
[−1,1], where a high positive MSC indicates well-separated clusters, a 
low positive MSC closer to 0 indicates overlapping clusters, and a low 
negative MSC indicates incorrect assignments. We obtain clustering for 
eligible thresholds in the range [0,1.0] with 0.01 step size, and compute 
their MSCs using sklearn.metrics.silhouette_score.

Hierarchical clustering of alignment strings requires a tradeoff. Gen-
erally, the best clustering is considered as the one with the highest 
MSC; however, for strings, we observe that this value is given by the 
maximum possible number of clusters (equal to the number of unique 
alignment strings). In gene-level trajectory alignment, many unique 
alignment patterns can emerge due to subtle differences in their opti-
mal alignment states across pseudotime points. For instance, in our 
simulated dataset, there are 113 unique strings covering seven align-
ment patterns (Extended Data Fig. 2c). Our objective is a less noisy, 

biologically interpretable clustering, and we note the importance of 
manual inspection to decide on a tradeoff between the number of clus-
ters versus cluster resolution. We recommend choosing the distance 
threshold that provides a good tradeoff between MSC and the number 
of clusters in capturing the main alignment patterns. In our simulated 
dataset, such a tradeoff is given by the threshold 0.22 corresponding to 
the second highest locally optimal MSC 0.82. This results in 15 clusters, 
including the seven major clusters giving only a 0.1% mis-clustering 
rate (the percentage of the number of outliers in all clusters) (Fig. 3e). 
The rest of the clusters are mini clusters covering 31 (0.8%) alignments 
separated due to noise such as warps. G2G enables the user to inspect 
these cluster diagnostics through the distance threshold versus MSC 
plots and the cluster-specific average alignment patterns.

Pathway over-representation analysis. We select the top k  mismatch-
ing genes (with ≤40% alignment similarity) to analyze their biological/
signaling pathway over-representation. The identified clusters of genes 
are also analyzed. We use GSEApy (v.1.0.4) Enrichr62,64,65 wrapper against 
the MSigDB_Hallmark_2020 (ref. 66) and KEGG_2021_Human pathway 
gene sets66,67. For all analyses, a 0.05 significance threshold of the 
adjusted P value (computed using the default hypergeometric test and 
Benjamini–Hochberg false discovery rate (FDR) correction of 
GSEApy-enrichr interface) was applied.

Determining the best parameter setting
G2G has several key parameters: interpolation structure, window_size 
of the Gaussian kernel used for interpolation and the five-state machine 
parameters.

Interpolation structure. The number of equispaced interpolation time 
points (m) over the [0,1] range decide the resolution of a trajectory 
alignment (a higher m gives higher resolution).

Low resolution can be less representative of the dynamic process, 
whereas high resolution introduces noise or redundancy. The optimal 
m is a tradeoff that depends on the datasets. We use optBinning68 
(v.0.18.0) to heuristically decide the optimal m for reference and query, 
separately. Using ContinuousOptimalBinning, we first infer an optimal 
binning of the pseudotime distribution and then use the number of 
bins produced as the m for our equispaced interpolation. In all datasets 
except for the T cell datasets, optBinning returned an equal number 
of optimal bins for both reference and query. For T cell datasets, we 
obtained 15 and 14 bins, respectively. For consistency, we selected the 
minimum (14). We do not use the optimal splits returned by optBinning 
as this is an irregular binning structure that is inconsistent for 
alignment.

Window_size. This controls the effective cell neighborhood toward 
estimating the weighted mean and variance of expression at each 
interpolation time point. CellAlign7 found that 0.1 window_size is the 
most effective for standard single-cell datasets (with a tradeoff between 
noise and locality); thus, we use the same across all our experiments 
and analyses.

Five-state machine. The parameters [Pr(M | M), Pr(I | I) and Pr(M | I)  
were optimized using grid search, while fixing Pr(M | M) = 0.99 to enforce 
the highest probability for continuous matches rather than 
single-point-matches. [Pr(I | I) = 0.1, Pr(M | I) = 0.7  yielded the lowest 
false mismatch rate across all G2G alignments on our simulated dataset. 
It remained optimal when varying Pr(M | M) in [0.1,1.0] (Supplementary 
Table 2). Therefore we set it as the default. For initial states, we use [Pr
(M) = 0.99 and Pr(D) = Pr(I) = 5 × 10−5].

Benchmarking against CellAlign and TrAGEDy alignment
DTW gene-level and cell-level high-dimensional alignments 
were generated using CellAlign’s7 (v.0.1.0) globalAlign function, 
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following interpolation and scaling defined in their documentation. 
DTW gene-level alignments were clustered using CellAlign’s pseudo-
timeClust function. Similarly, TrAGEDy’s post hoc-processed DTW 
alignments were generated using the script published by Laidlaw et al.17, 
following documentation. The same number of interpolation time 
points was used across all CellAlign7, TrAGEDy and G2G alignment. Both 
CellAlign7 and TrAGEDy ran with Euclidean distance for DTW (note that 
TrAGEDy recommends Spearman correlation which is mathematically 
undefined for single-gene observations, thus we use Euclidean distance 
for both cell-level and gene-level TrAGEDy alignment for consistency).

Datasets
Datasets for simulated experiments. Simulating different alignment 
patterns using Gaussian processes. We modeled log-normalized expres-
sion of gene x  as a function f  of time t  using a Gaussian process (GP):

f(t) ∼ GP( μ⃗(t),K(t, t′))

μ is the mean vector. K(t, t′) is a kernel function evaluating covariance 
of every pair of finite time points, where f (t) is evaluated, controlling 
the f (t) characteristics (for example, radial basis function (RBF) kernel 
for generating smooth, non-branching functions; a change point kernel 
for generating branching functions). GP with a suitable kernel can 
simulate different trajectory patterns in single-cell gene expression 
across pseudotime. Following the standard textbook and kernels dis-
cussed in literature69,70, we implemented a simulator using GPyTorch 
(v.1.5.1) for three types of alignment patterns (matching, divergence 
and convergence), comprising 300 cells spread across pseudotime 
range [0,1] for each trajectory.

Generating a matching pair of reference and query gene trajectories. We 
used a GP with a constant c mean vector ⃗μc (c ∈ [0.5,9.0] uniform ran-
dom sampled) and RBF kernel K  to sample μ(t) that describes an average 
expression for each time point. Next, we sampled two trajectories: 
GEXref(t) and GEXquery(t), from a GP with μ(t) and kernel σ2I  (σ ∈ [0.05, 1.0] 
uniform random sampled and I  = identity matrix).

μ(t) ∼ N(μ⃗c,K )

GEXref(t) ∼ N( μ(t),σ2I )

GEXquery(t) ∼ N( μ(t),σ2I )

Generating a divergence pair of reference and query gene trajectories. 
We used a change point (CP) kernel, which imposes a bifurcation in a 
trajectory as it reaches an approximate time point tCP  (also called a 
change point). It activates one covariance function before tCP  and 
another after tCP. We used the below CP kernel69,70:

KCP(t, t′) = aK1(t, t′) + a′K2(t, t′)

where,

a = σ(t)σ(t′)

a′ = [1 − σ (t)] [1 − σ(t′)]

σ(x) = 1
1 + exp(−s(x − tCP))

(sigmoid function)

with sss  acting as CP steepness parameter. Penfold et al.69 defines a 
branching process by enforcing a zero kernel (K1) before tCP and another 
suitable kernel (K2) afterwards. We used RBF for K2. Following is the 
generative process, starting with a base mean function μ(t) sampled 

from a separate GP with constant c mean vector ⃗μc (c ∈ [0.5,9.0] uniform 
randomly sampled) and an RBF kernel K .

μ(t) ∼ N( ⃗μc,K )

f1(t) ∼ N( μ(t),KCP)

f2(t) ∼ N( μ(t),KCP)

GEXref(t) ∼ N( f1(t),σ2I )

GEXquery(t) ∼ N( f2(t),σ2I )

Next, two functions were sampled from a GP with μ(t) and CP(t,t’), 
which were then used as mean vectors to generate GEXref(t)  and 
GEXquery(t) with kernel σ2I  (σ  = 0.3, a moderate constant). This ran for 
[tCP = 0.25, tCP = 0.5 and tCP= 0.75] resulting in three groups of divergence 
with varying bifurcation points (early divergence, mid divergence and 
late divergence). We then filtered the generated pairs to include simple/
clear divergence patterns (stable ground truth with no complex pat-
terns) using basic heuristics such as the difference between mean 
expression before divergence and at the end terminals of reference 
and query.

Extended Data Fig. 1a–c shows that the branching may start 
approximately before CP. Therefore, we expect the early nondivergent 
segment to continue at least until time point i < tCP, where we begin to 
see >0.01 covariance in the CP kernel. Accordingly, given our approx_
bifurcation_start_point = i, we expect the range of match lengths to fall 
between a lower-limit n_total_pseudotime_points × i  and upper-limit 
n_total_pseudotime_points × change_point.

Equivalently, we expect mismatch lengths to fall between 
lower-limit n_total_pseudotime_points × (1 − i)  and upper-limit 
n_total_pseudotime_points × (1 − change_point).

Generating a convergence pair of reference and query gene trajectories. 
We simply inverted the above generated divergence pairs, as conver-
gence and divergence are complementary to each other.

The final dataset comprises 3,500 pairs, covering seven alignment 
patterns: 500 matching pairs, 1,500 divergence pairs (500 early + 500 
mid + 500 late) and 1,500 convergence (500 early + 500 mid + 500 late).

Simulating mismatches on real scRNA-seq data
We downloaded the E15.5 mouse pancreas development dataset29 from 
the CellRank package71, and subsetted to β-cell lineage (1,845 cells) 
using the original author annotations (‘Ngn3 low EP’, ‘Ngn3 high EP’, 
‘Fev+’ and ‘Beta’). We selected the lineage-driver genes that are signifi-
cantly associated with differentiation potential to β-cells (769 of 2,000 
highly variable genes at 1% FDR), using CellRank (v.1.5.1) following their 
tutorials (https://cellrank.readthedocs.io/en/stable/auto_examples/
estimators/compute_lineage_drivers.html). For trajectories, we used 
the diffusion pseudotime estimated by the CellRank authors. To simu-
late trajectories for alignment, we divided the pseudotime (between 0 
and 1) equally into 50 bins, assigned cells to bins based on their pseu-
dotime and randomly split cells into reference and query datasets in 
each bin. To simulate deletions of n bins, we excluded query cells from 
the first n bins (cells where the pseudotime ≤nth bin upper margin). To 
simulate insertions of n bins, we shifted the query cell expression of the 
first n bins by the s.d. calculated across all bins for the gene of interest 
in the query cells. Query pseudotime axis was min–max-normalized 
after perturbation.

Datasets for benchmarking G2G
Dendritic cell stimulation dataset. The normalized single-cell datasets 
of PAM/LPS stimulation and their pseudotime estimates (downloaded 
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from the CellAlign7 GitHub repository) were converted into Anndata 
objects. These contain two gene sets: ‘core antiviral module’ (99 genes) 
and ‘peaked inflammatory module’ (89 genes), preselected from the 
original publication20 and referred to as ‘global’ and ‘local’, respectively 
by Alpert et al.7. The datasets include 179 PAM-stimulated cells and 290 
LPS-stimulated cells. CellAlign7 used 200 interpolation points for their 
PAM/LPS analysis, whereas the optBinning68 structure suggests that 14 
points are sufficient.

Simulated dataset containing trajectories with no shared process. 
This is a simulated negative control, generated using the published 
script by Laidlaw et al.17, which uses DynGen72, a single-cell data simu-
lator for dynamic processes. This dataset contains two trajectories 
simulated under two different gene regulatory networks and TF activ-
ity, ensuring no shared process between them. The reference and query 
have 619 genes across 2,000 and 1,940 cells, respectively.

Dataset for healthy versus IPF case study
We downloaded healthy and IPF datasets21 from the Gene Expres-
sion Omnibus (GEO) (GSE136831) and extracted the lineages AT2 to 
AT1 cell differentiation for healthy; AT2 to ABC differentiation for 
IPF (based on original author annotations). We identified a subset of 
54 AT2 cells of low quality (with high percentage of ribosomal gene 
expression) that were filtered out before further analysis. Next, we 
subsetted healthy and IPF cells to independently preprocess and esti-
mate their pseudotime. This includes 3,157 healthy cells (2,655 AT2 
and 502 AT1) from 28 individuals and 890 IPF cells (442 AT2 and 448 
ABCs) from 31 individuals. We first normalized their per-cell total tran-
script count to 10,000 followed by log1p transformation and selected 
4,000 HVGs to estimate cell pseudotime using Diffusion Pseudotime35 
implemented in SCANPY73 (v.1.9.6) with default parameter settings. 
The root cell for each trajectory was chosen based on the expression 
score of known AT2 progenitor cell markers: AXIN2, FGFR2, ID2, FZD6, 
LRP5 and LRP6 (refs. 74,75) (using scanpy.tl.score_genes). ABC-specific 
marker genes were obtained from the original paper’s supplementary 
file (aba1983_data_s2.txt)21.

Dataset preparation for in vivo and in vitro T cell development 
comparison
Cell cultures for ATOs and scRNA-seq experiment. The MS5 line 
transduced with human DLL4 was obtained from G. Crooks (UCLA) 
as a gift. The MS5-hDLL4 cells were cultured in DMEM (Gibco, 41966) 
with 10% FBS (Gibco, 16000044). Two iPS cell lines were used in this 
study. Cell lines HPSI0114i-kolf_2 (Kolf) and HPSI0514i-fiaj_1 (Fiaj) were 
obtained from the Human Induced Pluripotent Stem Cell initiative 
(HipSci: www.hipsci.org) collection. All iPS cell lines were cultured 
on vitronectin-coated (diluted 1:25 in PBS; Gibco, A14700) plates, in 
TeSR-E8 medium (STEMCELL Technologies, 05990).

We followed the PSC-ATO protocol as previously described40. iPS 
cells were collected as a single-cell suspension and seeded (3 × 106 cells 
per well) in GFR-reduced Matrigel-coated (Corning, 356231) six-well 
plates in X-VIVO 15 medium (Lonza, 04-418Q), supplemented with 
rhActivin A, rhBMP4, rhVEGF, rhFGF (R&D Systems, 338-AC-010/314-BP-
010/298-VS-005/233-FB-010) and ROCK inhibitor (Y27632; LKT Labs, 
Y1000) on day −17 and only rhBMP4, rhVEGF and rhFGF on days −16 
and −15. Cells were collected 3.5 days later (day −14) and isolated 
by fluorescence-activated cell sorting (FACS) for CD326–CD56+ (PE 
anti-human CD326 antibody, BioLegend, 324205; APC anti-human 
CD56 antibody, BioLegend, 318309) human embryonic mesodermal 
progenitors (hEMPs). Representative FACS plots are shown in Sup-
plementary Fig. 7a.

Isolated hEMPs were combined with MS5-hDLL4 at a ratio of 1:50. 
Two or three cell-dense droplets (5 × 105 cells in 6 μl hematopoietic 
induction medium) were deposited on top of an insert in each well of 
a six-well plate. Hematopoietic induction medium composed of EGM2 

(Lonza, CC-3162) supplemented with ROCK inhibitor and SB blocker 
(TGF-β receptor kinase inhibitor SB- 431542; Abcam, ab120163) was 
added into the wells outside the inserts so that the cells sat at the air–liq-
uid interface. The organoids were then cultured in EGM2 with SB blocker 
for 7 days (days −14 to −7), before the addition of cytokines rhSCF, 
rhFLT3L and rhTPO (Peprotech, 300-07/ 300-19/300-18) between days 
−6 to 0. These 2 weeks formed the hematopoietic induction phase. 
On day 1, the medium was changed again to RB27 (RPMI (Corning, 
10-040-CV) supplemented with B27 (Gibco, 17504-044), ascorbic acid 
(Sigma-Aldrich, A8960-5G), penicillin–streptomycin (Sigma-Aldrich, 
P4333) and glutaMAX (Thermo Fisher Scientific, 35050061)) with 
rhSCF, rhFLT3L and rhIL7 (Peprotech, 200-07). The organoids can be 
maintained in culture for 7 more weeks in this medium.

For dissociation of organoids on day −7, they were removed from 
culture insert and incubated in digestion buffer, which consisted of 
collagenase type IV solution (STEMCELL Technologies, 07909) supple-
mented with 0.88 mg ml−1 collagenase/dispase (Roche, 10269638001) 
and 50 U DNase I (Sigma, 9003-98-9 D5025-15KU), for 20 min at 37 °C. 
Vigorous pipetting was performed in the middle of the incubation and 
at the end. After complete disaggregation, a single-cell suspension was 
prepared by passing through a 50-μm strainer.

For dissociation of organoids from day 0 onwards, a cell scraper 
was used to detach ATOs from cell culture insert membranes and 
detached ATOs were then submerged in cold flow buffer (PBS (Gibco, 
14190144) containing 2% (v/v) FBS and 2 mM EDTA (Invitrogen, 
15575020)). Culture inserts were washed and detached ATOs were 
pipetted up and down to form a single-cell suspension before passing 
through a 50-μm strainer.

Cells were then stained with designed panels of antibodies and ana-
lyzed by flow cytometry. FACS was performed at the same time and live 
human 4,6-diamidino-2-phenylindole (DAPI)− anti-mouse CD29– (Invit-
rogen, D1306; APC/Cy7 anti-mouse CD29 antibody, BioLegend, 102225) 
cells were sorted for day −7, day 0 and week 3 samples, and live (DAPI–) 
cells were sorted for week 5 and week 7 samples before loading onto 
each channel of a Chromium chip from a Chromium single-cell V(D)J kit 
(10X Genomics). Representative FACS plots are shown in Supplementary 
Fig. 7b. The metadata for all the ATO samples can be found in Supplemen-
tary Table 8. For the day −14 sample, some sorted (both hEMP and the 
rest of the DAPI– fraction) and unsorted cells were stained with hashtag 
antibodies (TotalSeq-C antibodies from BioLegend (Supplementary 
Table 9), following a 10x cell surface protein-labeling protocol) before 
being mixed together with some mouse stromal cells (MS5-hDLL4) for 
10x loading. For week 1 sample, hashtag antibodies were added at the 
same time as the FACS antibodies, before sorting. All antibodies used 
were added as 2 μl per antibody in a total of 100 μl staining solution.

Single-cell complementary DNA synthesis, amplification and gene 
expression (GEX) and cell surface protein (CITE-seq) libraries were 
generated following the manufacturer’s instructions. Sequencing was 
performed on the Illumina Novaseq 6000 system. The gene expression 
libraries were sequenced at a target depth of 50,000 reads per cell using 
the following parameters: Read1: 26 cycles; i7, 8 cycles; i5, 0 cycles; 
Read2: 91 cycles to generate 75-bp paired-end reads.

ATO data preprocessing and annotation. Raw scRNA-seq reads were 
mapped using Cell Ranger (v.3.0.2) with combined human reference 
of GRCh38.93 and mouse reference of mm10-3.1.0. Low-quality cells 
were filtered out (minimum number of reads of 2,000, minimum num-
ber of genes of 500, maximum number of genes of 7,000; Scrublet76 
(v.0.2.3) doublet detection score <0.15 and mitochondrial reads frac-
tion <0.2). Cells where the percentage of counts from human genes was 
<90% were considered as mouse cells and excluded from downstream 
analysis. Cells were assigned to different cell lines (Kolf or Fiaj) using 
genotype prediction with Souporcell (v.2.4.0)77. The mapping outputs 
of the eight samples were merged, with sample ID prepended to the 
barcode IDs in both the BAM and barcodes.tsv to prevent erroneous 

http://www.nature.com/naturemethods
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136831
http://www.hipsci.org


Nature Methods

Article https://doi.org/10.1038/s41592-024-02378-4

cross-sample barcode overlap. Souporcell was run with –skip_remap 
True –-K 2 and the common variants file based on common (≥2% 
population allele frequency) single-nucleotide polymorphisms (SNPs) 
from 1000 Genomes Project data, as distributed in the tool’s reposi-
tory. We selected two clusters due to the already known two cell lines. 
Next the data went through the standard pipeline of filtering out genes 
(cell cycle78 genes, genes detected in <3 cells) and normalizing the 
per-cell total count to 10,000 followed by log1p transformation and 
scaling to zero mean and unit variance (with max_value = 10 to clip after 
scaling), using SCANPY73. The final dataset had 31,483 ATO cells with 
23,526 genes, which were input to CellTypist41 (v.0.1.4) (for annotation 
prediction using pretrained logistic regression classifier –Pan_Fetal_
Human model under majority voting). We then obtained the Uniform 
Manifold Approximation and Projection (UMAP) embedding for this 
dataset based on its scVI42 (v.0.14.5) batch-corrected embedding (with 
ten latent dimensions, two hidden layers, 128 nodes per hidden layer 
and 0.2 dropout rate for the neural network) and subsetted cells to 
non-hematopoietic lineage, T/ILC/NK lineage and other hematopoi-
etic lineage cells (Extended Data Fig. 8) using Leiden clustering. For 
each lineage, scVI and UMAP embeddings were re-computed and cell 
types were annotated (low-level annotations in Extended Data Fig. 6b, 
with more refined annotations in Extended Data Fig. 7a) by inspecting 
both CellTypist predictions (Extended Data Fig. 7b) and marker gene 
expression (Extended Data Fig. 8).

Joint embedding of reference and organoid for pseudotime esti-
mation. We downloaded the annotated human fetal atlas dataset 
from https://developmental.cellatlas.io/fetal-immune and extracted 
cell types (79,535 cells in total) representing the T cell developmen-
tal trajectory from progenitor cells toward type 1 innate T cells (T1 
dataset), including cycling MPP, HSC_MPP, LMPP_MLP, DN(early) T, 
DN(P) T, DN(Q) T, DP(P) T, DP(Q) T, ABT(entry) and type 1 innate T cells. 
We then compiled a reduced representation (20,384 cells), preserv-
ing their underlying cell-type composition by random subsampling 
from each cell type (with minimum sample size of 500 cells, aiming 
for ~20,000 total number of cells) based on their annotations. Such 
stratified-sampling is practical for dealing with massive single-cell data-
sets to reduce resource demands. Separately, we extracted cell types 
from the ATO dataset (19,013 cells) representing the trajectory from iPS 
cells toward SP T cells, including iPS cells, primitive streak, mesoder-
mal progenitor, endothelium, HSC_MPP, HSC_MPP/LMPP_MLP/DC2, 
DN(early) T, DN T, DP(P) T, DP(Q) T, ABT(entry) and SP T cells.

T1 and ATO datasets were merged and preprocessed together by 
filtering out cells with more than 8% total mitochondrial unique molec-
ular identifiers, cell cycle genes78 and genes expressed in <3 cells. Next, 
HVGs were selected after normalizing per-cell count to 10,000 reads 
and log1p transformation. T1 pan fetal reference had 33 batches (due 
to different 10x chemistry 3′ versus 5′ and donors), whereas the ATOs 
had two batches (due to two cell lines, Kolf and Fiaj). We constructed 
a batch-corrected, scVI latent embedding (ten latent dimensions, two 
hidden layers, 128 nodes per hidden layer and 0.2 dropout rate for the 
neural network) of the merged dataset. This was taken to build the cell 
neighborhood graph and UMAP embedding using SCANPY73. The final 
T1 and ATO datasets comprised 20,327 cells and 17,176 cells respectively. 
A total of 18,436 cells of T1 and 10,089 cells of ATO belong to the T cell 
lineage (DN T onwards).

We followed a similar preprocessing for the pan fetal reference 
representing the trajectory toward CD8+ T (CD8+ dataset) (including 
cycling MPP, HSC_MPP, LMPP_MLP, DN(early) T, DN(P) T, DN(Q) T, 
DP(P) T, DP(Q) T, ABT(entry) and CD8+ T cells). The initially extracted 
CD8+ subset (83,177 cells) was reduced to 20,412 cells, which was then 
merged with the 19,013 ATO cells and subjected to the same filtering 
and normalization carried out for the T1 + ATO merge before scVI 
integration. The final CD8+ dataset comprised 20,324 cells, of which 
18,490 cells were DN T onwards.

Pseudotime estimation using GPLVM. Differentiation pseudotime 
was estimated separately for T1 reference, CD8+ reference and ATO by 
employing GPLVM43,79 (a probabilistic nonlinear dimensionality reduc-
tion method that models gene expression as a function f(X) of a set of 
latent covariates X). It enables incorporating time priors when estimat-
ing pseudotime as a latent dimension. GPLVM has previously been 
successful in single-cell trajectory inference to incorporate useful 
priors79–83 We used the Pyro84 (v.1.8.0) GPLVM implementation with 
sparse GP inference (32 inducing points), RBF and Adam optimizer, to 
obtain an optimal two-dimensional latent embedding, where the two 
dimensions correspond to pseudotime and a second level of latent 
effects (for example batch), respectively. The pseudotime was assigned 
a Gaussian prior with cell sampling times as the mean. The second 
dimension was zero-initialized. GPLVM loss curve reasonably con-
verged in 2,000 iterations at optimization.

For the ATO data, GPLVM was initialized with cell sampling (cap-
ture) days as the prior. As there was no temporal data for the pan fetal 
reference, we first approximated time prior for each reference cell as 
the weighted average of their k-nearest organoid neighborhood (kNN) 
capture time. A k = 3 organoid neighborhood for a reference cell was 
obtained using the cKDTree-based search method implemented in 
BBKNN85 (v.1.5.1) on their scVI-based UMAP embedding. Contribution 
of each organoid neighbor was weighted according to its distance (the 
kNN distance vector was softmax-transformed and the normalized recip-
rocal of each distance was taken as the associated weight, enforcing less 
contribution from distant neighbors toward the weighted average). This 
approximation may introduce outliers due to the spatial arrangement of 
different cell types in the UMAP. Thus, we leveraged the known cell-type 
annotations to refine the approximation by assigning each reference 
cell with the average approximated capture time of its cell type. These 
approximated capture times were scaled to be in [0,1] range and input as 
the mean of the Gaussian prior of pseudotime to the previously described 
GPLVM. For T1 and CD8+ GPLVMs, the input gene space was 2,608 genes 
and 2,616 genes, respectively (the same as at scVI integration). To ensure 
no outliers, the GPLVM estimated pseudotime was further refined by cor-
recting outliers of each cell type using the cell-type specific average of 
estimated pseudotime. Outliers were selected based on the interquartile 
range (IQR) rule (1.5 × IQR below the first quartile and above the third 
quartile of the cell-type-specific pseudotime distribution).

G2G alignment
For the complete T1 versus ATO comparison using G2G, the total com-
mon gene space of 20,240 genes was considered upon filtering genes 
with <3 cells expressed, 10,000 total count per-cell normalization and 
log1p transformation. For the DN T onwards comparison, there were 
17,718 genes for T1 versus ATO and 20,183 genes for CD8+ versus ATO. 
These total gene spaces were subsetted to include only the transcrip-
tion factors44 (1,371 TFs) and relevant signaling pathways focused in 
this work. G2G alignment was performed using 14 equispaced pseu-
dotime points.

High-dimensional alignment using CellAlign and TrAGEDy1. To 
compare G2G alignment of T1 versus ATO against CellAlign and TrAG-
EDy alignments, we followed the same steps and parameter settings of 
those tools as described in the previous section ‘Benchmarking against 
CellAlign7 and TrAGEDy17 alignment’. The alignment of 14 equispaced 
interpolation pseudotime points across the 1,371 TFs gave a three-state 
alignment string (MVVVVVVMWMWWWVWWWMWVVVWW) from CellAlign and 
a five-state alignment string (IIIIIIMMMWWWWMWWMIDIDID) from 
TrAGEDy.

ATO TNF preliminary validation experiment
For the TNF validation experiment, we followed the PSC-ATO proto-
col described previously using Kolf iPS cell line. One plate (12 orga-
noids) was set for each condition, with four TNF (R&D Systems, 210-TA) 
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conditions: control (no TNF addition), 1 ng ml−1 (final concentration), 
5 ng ml−1 and 25 ng ml−1. TNF was added into the medium between weeks 
6–7. Organoids were collected at week 7, stained with hashtag antibod-
ies (TotalSeq-C antibodies from BioLegend) and a designed panel of 
FACS antibodies and sorted for DAPI–CD45+ cells before 10x loading. 
Representative FACS plots are shown in Supplementary Fig. 7c. Library 
construction, sequencing and data preprocessing was the same as the 
WT ATO organoids.

Assessing T cells from ATO before and ATO after TNF 
treatment
The ATOs with TNF treatment (ATOTNF) resulted in 123 good quality 
T cells (data preprocessing and filtering as above; annotated by Cell-
Typist41 as type 1 innate T cells) where the majority (~94% cells) were 
1 ng ml−1 TNF-treated (as opposed to wild-type, 5 ng ml−1 and 25 ng ml−1). 
Thus, we performed the analysis using T cells treated with 1 ng ml−1 TNF 
(116 cells) that were predicted to be type 1 innate T cells by CellTypist41.

The wild-type ATOs without TNF treatment have 6,558 SP T cells 
and the pan fetal reference39 has 1,413 type 1 innate T cells. To check 
whether there is an improvement in the maturity of resultant T cells in 
ATOTNF, we evaluated and compared the degree of similarity between 
ATOTNF and the reference against that between ATOs and the reference. 
This assessment was conducted via two directions: cell level and gene 
level. For cell-level assessment, we constructed an scVI42 latent embed-
ding by integrating the reference, ATOs and ATOTNF together, following 
the same preprocessing steps carried out for the ATOs and the reference 
previously. We then computed the Euclidean distance between the mean 
latent dimensions of in vitro SP T cells and in vivo type 1 innate T cells. For 
gene-level assessment, we computed the MML distance of gene expres-
sion distributions by first identifying significantly distant genes across 
all the TFs, as well as across several curated pathway gene subsets from 
KEGG and MSigDB that are associated with TNF signaling (Supplemen-
tary Note), before and after TNF treatment. We next tested whether the 
difference between those distance distributions was significant or not 
using the Mann–Whitney U-test. The following section describes our 
approach to identifying genes with a statistically significant distance.

Estimating an empirical null distribution of MML distances to 
assess significance of a distance
We expect no significant difference in gene expression between any 
two random subsets of cells belonging to the same cell type in the same 
system. Thus, we generated such random pairs of cell subsets within 
our pan fetal reference (type 1 innate T cell) dataset as well as within 
the ATO (SP T cell) dataset across all 1,371 TFs, to construct an empirical 
null distribution for MML distance. This enables us to compute a P value 
for any given MML distance x, indicating how likely x  is to occur by 
chance.

For each TF, we performed uniform random sampling of a subset 
pair without replacement for 50 iterations, resulting in 137,100 total 
number of pairs. Each subset contains 50 cells. Then, for each pair, we 
computed the MML distance. All computed MML distances together 
form a null distribution which we used to evaluate significance of a 
given MML distance between two expression distributions.

The resultant empirical distribution of MML distances is highly 
left-skewed. We constructed its empirical cumulative density func-
tion (CDF) using distributions.empirical_distribution.ECDF function 
in statsmodels (v.0.13.5) to test significance in distances under no 
assumption about the family of distribution. The P values were adjusted 
for multiple testing using the Benjamini–Hochberg method, before 
identifying significantly distant genes at a given level of significance.

Testing statistical significance of the change in gene expression 
distances to reference from wild-type ATOs versus ATOTNF

Given the MML distances of the genes that are significantly differ-
ent: (1) between the reference and ATOs (sample 1); and (2) between 

the reference and ATOTNF (sample 2), we tested whether the average 
gene expression distance dropped after TNF treatment. To test the 
significance of the change in distance, we performed a nonparametric 
Mann–Whitney U-test implemented in scipy.stats.mannwhitneyu.

Testing the closeness of SP T cells in the ATO to the reference 
type 1 innate T cells before and after TNF treatment
We compared the 6,558 SP T cells in ATO and the 116 T cells in ATOTNF, 
against the 1,413 type 1 innate T cells from the pan fetal reference. This 
was carried out for all 1,371 human TFs, as well as the 196 genes in TNF 
signaling via the NF-κB pathway (from MSigDb).

For each gene set, we first computed the MML distances of the 
genes between (1) reference and ATOs; and (2) reference and ATOTNF. 
We then computed a P value for each MML distance under the empiri-
cal CDF estimated by computing MML distances between randomly 
sampled homogeneous subsets across the reference and ATO cells. 
This allowed us to identify the gene set that was significantly different 
between reference and ATOs (diffsetUNTREATED) and the gene set that was 
significantly different between reference and ATOTNF (diffsetTREATED). 
Next, we compared the average distance of genes in diffsetUNTREATED 
to the average distance of genes in diffsetTREATED, while testing the sig-
nificance of the change in the distances using Mann–Whitney U-test.

Software and computational requirements
The G2G framework and all analyses were implemented in Python 
(≥v.3.8) with commonly used scientific-computing and visualization 
libraries and the specific libraries mentioned in the Methods. G2G 
was tested on two operating systems: Ubuntu 20.04.1 LTS and Debian 
GNU/Linux 10 (buster). The G2G runtime depends on the number of 
cells in the reference and query datasets, the number of interpolation 
time points and the number of genes to align. G2G (v.0.1.0) used in 
this work is a less-efficient version that utilizes concurrency through 
Python multiprocessing to speed up the gene-level alignment process. 
It creates a number of processes equal to the number of cores in the 
system and each process performs a single gene-level alignment at one 
time. Per-gene runtime for a case aligning 100 genes between 20,327 
reference cells and 17,176 query cells (pan fetal reference and ATO 
datasets), with 14 interpolation points and 16 cores in a Linux (SMP 
Debian 4.19.304-1 (2024-01-09)) system, was approximately 5.57 s. 
A notably faster, latest Genes2Genes v.0.2.0 is now available, run-
ning sequentially with 0.60 s per-gene for the same case (SMP Debian 
5.10.216-1 (2024-05-03)).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data used to perform analyses in the manuscript are available at 
https://zenodo.org/records/11182400 (ref. 86) and https://github.
com/Teichlab/G2G_notebooks. All generated alignments are available 
as Supplementary Data. Raw sequencing data for newly generated 
sequencing libraries have been deposited in ArrayExpress (accession 
no. E-MTAB-12720).

Code availability
G2G is an open-source Python package with a tutorial available at 
https://github.com/Teichlab/Genes2Genes. Code used to perform 
analyses in the manuscript using G2G v.0.1.0 is available at https://
github.com/Teichlab/G2G_notebooks.
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Extended Data Fig. 1 | Simulating the bifurcation of reference and query 
trajectories using change point kernels. (Note: A change point kernel defines 
shifts and changes in covariance between discrete time points in a time series 
that describes a particular Gaussian process. In the context of a single-cell 
pseudotime trajectory, each discrete time point corresponds to a single cell. The 
change point kernel can be represented by a pairwise covariance matrix between 
those time points, visualized using heatmaps). a, Change point kernel heatmaps 
for each approximate bifurcation point (change point) ∈ [0.25,0.5,0.75].  
b, The same change point kernels binarized based on the 0.01 covariance 
threshold (top), c, The average covariance plotted for each i× i sub square 

matrix from i = 0 to i = change point, showing that the branching effect can 
approximately start before the specified change point. d, Expected bifurcation 
region is taken from the point where we begin to see > 0.01 covariance in the 
change point kernel, until the particular change point. e, Illustration of the main 
regions of match and mismatch expected in trajectory alignment under 
Divergence class (left) and Convergence class (right). A Divergence alignment is 
described by a start-match region followed by an end-mismatch region, whereas 
a Convergence alignment is described by a start-mismatch region followed by an 
end-match region. Illustrations in d-e were created using BioRender  
(https://biorender.com).
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Extended Data Fig. 2 | Simulation Data Experiment 1. a, Distributions of start-
match lengths (following a false mismatch if any), end-mismatch lengths (prior 
to a false match if any), start-mismatch (false mismatch) lengths (number of false 
mismatches starting from time point 0), and the number of intermediate false 
mismatches within the match regions, in the 1500 Divergence alignments across 
the three bifurcation subgroups (that is, under approximate bifurcation point 
[0.25,0.5,0.75]; each subgroup has 500 alignments), generated by Genes2Genes, 
TrAGEDyMINIMUM, and TrAGEDyNULL. 15 equispaced time points over pseudotime 
[0,1] were used for distribution interpolation and alignment. Colored boxes (in 
blue, orange, and green) in the two leftmost columns display possible ranges 
of expected match lengths corresponding to the three different, approximate 
bifurcation points: [0.25,0.5,0.75], respectively. Each violin plot shows the length 
distribution across all n = 500 alignments in each group as a kernel density 
estimation. Inside the violin is a box showing the interquartile range (covering 
the 25% and 75% quantiles with a point indicating median). b, Similar statistics as 

in a, reported for the 1500 Convergence alignments across the three bifurcation 
subgroups, generated by Genes2Genes, TrAGEDyMINIMUM, and TrAGEDyNULL. 
Distributions of end-match lengths (prior to a false mismatch if there is any), 
start-mismatch lengths (following a false match if there is any), end-mismatch 
lengths (number of false mismatches until time point 1), and the number of 
intermediate false mismatches within the match regions. c, Cluster diagnostic 
plots for the hierarchical agglomerative clustering of the 3500 alignments 
across all pattern classes (including 500 Matching alignments, 1500 Divergence 
alignments, 1500 Convergence alignments), in terms of the mean Silhouette score 
when varying the Levenshtein distance threshold (or the number of clusters). The 
highest number of clusters represent the number of all unique 5-state alignment 
strings (that is 113 strings). Bold highlighted circles mark the local optimal mean 
Silhouette score which gives 15 optimal clusters for the genes at 0.22 distance 
threshold. d, Mis-clustering rates of the CellAlign k-means clustering outputs for 
all 3500 alignments, versus the number of clusters (k) ranging from k = 7 to k = 50.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Simulation Data Experiment 2. a, Experiment 2 uses 769 
genes in the mouse pancreas development (Beta lineage) scRNA-seq dataset29 to 
generate perturbed pairs of alignment from the expected Matching alignments. 
Perturbation scenario 1 deletes the start region from the reference trajectory, 
whereas perturbation scenario 2 changes the start region of the query trajectory. 
b, Alignment similarity distributions for varying sizes of perturbation (perturbed 
percentage of the 50 pseudotime interpolation points) under perturbation 
scenario 1, resulted from gene-level alignment using TrAGEDyMINIMUM, 
TrAGEDyNULL, and Genes2Genes. Each point in the violin plot represents a gene 
(total number of genes n = 769). In each plot, the observed average alignment 
similarity across different perturbation sizes is shown by the green line. Blue line 
shows the expected alignment similarity across different perturbation sizes. 
Each violin plot shows the distribution of alignment similarities across all gene 
alignments in each group as a kernel density estimation. Inside the violin is a box 
showing the interquartile range (covering the 25% and 75% quantiles with a point 

indicating median). c, The alignment similarity distributions for varying sizes of 
perturbation under perturbation scenario 2 similar to b. There are two expected 
lines: maximum (in blue) and minimum (in red). The maximum mismatch length 
is expected when both reference and query time points form insertions and 
deletions, making the maximum expected length size*2. The minimum mismatch 
length is expected when only the changed reference time points are mismatched 
as insertions, while the corresponding query time points are matched to the 
non-perturbed reference time points (illustrated in e). d, Overall smoothened 
(interpolated) and z-normalized mean gene expression along pseudotime 
(across 50 equispaced interpolation time points) for all genes in the dataset. 
e, Example illustrations of the two types of trajectory alignment that gives the 
minimum and maximum expected mismatch lengths under the perturbation 
scenario 2, where a start portion of a particular size in the query trajectory (in 
blue) is changed with respect to the reference trajectory (in green). Illustrations 
in a,e were created using BioRender (https://biorender.com).
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Extended Data Fig. 4 | The PAM vs. LPS alignment using Genes2Genes. a, 
Density plot of the alignment similarity distribution (that is distribution of 
the percentage of matches/warps across all the alignment outputs) for the 
99 genes in the ‘core antiviral module’. b, Top: Cluster diagnostic plots for the 
hierarchical agglomerative clustering of those 99 gene alignments in terms of 
the mean Silhouette score when varying the Levenshtein distance threshold (or 
the number of clusters). The highest number of clusters represent the number of 
all unique 5-state alignment strings (that is 48 strings). Bold highlighted circles 
mark the local optimal mean Silhouette score which gives two optimal clusters 
for the genes at 0.4 distance threshold. Bottom: Each plot titled by “Cluster-x 
| n” is the pairwise matrix of reference time points (columns) and query time 

points (rows), visualizing alignment paths for the total of n genes in cluster x. 
c, Density plot of the alignment similarity distribution (that is distribution of 
the percentage of matches/warps across all the alignment outputs) for the 89 
genes in the ‘peaked inflammatory module’. d, Cluster diagnostic plots for the 
hierarchical agglomerative clustering of those 89 gene alignments, reported 
similarly to b. The identified optimal clustering structure has 7 clusters (at 
distance threshold=0.37 corresponding to the local optimal mean Silhouette 
score, highlighted by bold circles). e, The clustermap of the pairwise Levenshtein 
distance matrix of all 89 gene alignments, which illustrates the identified 7 
clusters.
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Extended Data Fig. 5 | The healthy versus Idiopathic Pulmonary Fibrosis 
(IPF) disease case study alignment clustering outputs. a, Density plot of 
the alignment similarity distribution (that is distribution of the percentage 
of matches/warps across all the alignment outputs) for the 994 highly 
variable genes in the dataset. b, Cluster diagnostic plots for the hierarchical 
agglomerative clustering of those 994 gene alignments in terms of the mean 
Silhouette score when varying the Levenshtein distance threshold (or the number 
of clusters). The highest number of clusters represent the number of all unique 

5-state alignment strings (that is 325 strings). Bold highlighted circles mark the 
local optimal mean Silhouette score which gives nine optimal clusters for the 
genes at 0.48 distance threshold. c, The identified clustering structure. Left: Each 
plot titled by “Cluster-x | n” is the pairwise matrix of reference and query time 
points, visualizing alignment paths for all the genes (one alignment per gene 
and a total of n genes in the cluster) in a cluster x. Right: The clustermap of the 
pairwise Levenshtein distance matrix of all 994 gene alignments.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | In vivo, in vitro human T cell development data 
integration and pseudotime inference. a, Top: schematic showing the 
experimental setup of T cell differentiation from iPSCs in ATOs. Bottom: barplot 
of cell type composition in ATO at different time points during differentiation. 
b, UMAP visualization of different cell types in the ATO dataset (low-level 
annotation, number of cells n = 31,483), with more refined annotation in Extended 
Data Fig. 7a. c, Workflow of integrating in vitro (that is ATO) and in vivo (that is pan 

fetal reference from Suo et al.39) human T cell development data and pseudotime 
inference using GPLVM. d, Main: UMAP visualization of integrated in vivo and in 
vitro human T cell development data, colored by the cell types. Right insert: the 
same UMAP visualization colored by the data source. e, Stripplot of the inferred 
pseudotime (x axis) against different cell types (y axis), colored by the cell types, 
of in vivo pan fetal reference data (top) and in vitro organoid data (bottom). 
Illustrations in a,c were created using BioRender (https://biorender.com).
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Extended Data Fig. 7 | Analysis of artificial thymic organoid scRNA-seq data. 
a, UMAP visualization of different cell types in the ATO (refined annotation). 
iPSC: induced pluripotent stem cell, HSC_MPP: hematopoietic stem cell, and 
multipotent progenitor, LMPP_MLP: lymphoid-primed multipotent progenitor 
and multi lymphoid progenitor, DC: dendritic cell, CMP: common myeloid 
progenitor, GMP: granulocyte and monocyte progenitor, MK: megakaryocyte, 
MEP: megakaryocyte erythroid progenitor, YS_ERY: yolk sac-like erythrocyte, 

EARLY_ERY: early erythrocyte, MID_ERY: mid-stage erythrocyte, DN(EARLY) T: 
early double negative T cell, DN T: double negative T cell, DP(P) T: proliferating 
double positive T cell, DP(Q) T: quiescent double positive T cell, SP T: single 
positive T cell, NK: natural killer cell, ILC: innate lymphoid cell. b, Predicted 
annotations from logistic regression model with CellTypist41 using the 
developing human immune atlas39 as the training dataset, overlaid on the same 
UMAP plot as in a.
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Extended Data Fig. 8 | Annotation of artificial thymic organoid scRNA-seq 
data. For each subset lineage embedding generated through scVI, we show UMAP 
embeddings of cells colored by annotated cell populations and dot plots of mean 
expression (log-normalized counts, dot color) and fraction of expressing cells 

(dot size) of marker genes (columns) used for cell population annotation (rows). 
a, Annotation of non-hematopoietic cells. b, Annotation of T/ILC/NK lineage 
cells. c, Annotation of other hematopoietic cells that are not in b.
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Extended Data Fig. 9 | Pan fetal reference vs artificial thymic organoid 
alignment clustering outputs. a, Density plot of the alignment similarity 
distribution (that is distribution of the percentage of matches/warps across all 
the alignment outputs) for all 1371 transcription factors. b, Cluster diagnostic 
plots for the hierarchical agglomerative clustering of those 1371 TF alignments 
in terms of the mean Silhouette score when varying the Levenshtein distance 
threshold (or the number of clusters). The highest number of clusters represent 
the number of all unique 5-state alignment strings (that is 355 strings). Bold 
highlighted circles mark the local optimal mean Silhouette scores which give 
22 optimal clusters for the genes at 0.45 distance threshold (low resolution), 

and 136 clusters at 0.18 distance threshold (high resolution). c, The identified 
clustering structure. Left: Each plot titled by “Cluster-x | n” is the pairwise matrix 
of reference and query time points, visualizing alignment paths for all the genes 
(one alignment per gene and a total of n genes in the cluster) in a cluster x. Right: 
The clustermap of the pairwise Levenshtein distance matrix of all TF alignments. 
Bottom: Identified interesting clusters (that is Cluster 2 representing early 
mismatched TFs, Cluster 0 representing middle mismatched TFs, Cluster 5 & 10 
representing almost 100% mismatched TFs), with their aggregate alignments as 
5-state strings.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Further downstream analysis of in vivo, in vitro 
human T cell development alignment. a, Genes2Genes aggregate alignment for 
all 196 genes in the TNFα signaling via NF-κB pathway, between in vitro organoid 
(ATO) and in vivo reference. Left: pairwise time point matrix between reference 
and organoid. Color represents total gene count showing a match between 
corresponding time points. White line represents the average alignment path. 
Right: Schematic aggregate mapping between pseudotime points. Stacked 
bar-plots represent reference and organoid cell-type compositions across 14 
equispaced pseudotime points; Black lines represent matches. b, Aggregate 
alignment similar to a, between in vivo Type 1 Innate T cell reference (T1) and ATO 
across 1220 TFs (left), and CD8+ Reference and ATO across 1219 TFs. c, Alignment 
differences between in vivo conventional CD8+ T lineage versus organoid, 
and T1 lineage versus organoid. Middle: alignment similarity difference (y 
axis) against log2 fold change of mean expression between CD8 + T and T1 cells 
(x axis). Color reflects the absolute value of alignment similarity difference. 
Surrounding plots: the interpolated log1p-normalized (that is per-cell total 

sum of the raw transcript counts normalized to 10,000 and log1p-transformed) 
expression (y axis) against pseudotime (x axis) showing the alignment between 
T1 lineage (green) and ATO (blue) (top), and the alignment between CD8 + T 
lineage (orange) and ATO (blue) (bottom), for four selected genes. Bold lines 
represent mean expression trends; Faded data points are 50 random samples 
from the estimated expression distribution at each time point. Black dashed lines 
represent matches. d, Heatmap of mean log1p-normalized gene expression of all 
196 genes within TNF signaling pathway in in vivo type 1 innate T cells, ATO SP T 
cells, and TNF-treated-ATO SP T cells. e, Gene-level alignments (similar to plots 
in c) for five, single positive (SP) T cell maturity markers (IL7R, KLF2, S1PR1, SELL, 
FOXO1) between T1 and ATO. f, Mean log1p-normalized gene expression of those 
marker genes compared across reference type 1 innate T cells, ATO SP T cells, and 
TNF-treated-ATO SP T cells. Illustrations in d-e were created using BioRender 
(https://biorender.com). All interpolations and statistics were generated using 
our Genes2Genes framework.
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